Cho mặt phẳng (P) đi qua ba điểm A(0; 1; 1), B(3; 2; 2), C(4; 3; 5).
a) Mặt phẳng (P) có cặp vectơ chỉ phương là \[\overrightarrow {AB} = \left( {3;1;1} \right)\], \[\overrightarrow {AC} = \left( {4;2;4} \right)\].
b) Mặt phẳng (P) có vectơ pháp tuyến là \[\overrightarrow n = \left( {1;4;1} \right)\].
c) Mặt phẳng (P) đi qua điểm M(1; 2; 4).
d) Mặt phẳng (P) vuông góc với đường thẳng d: \[\frac{{x + 2}}{1} = \frac{y}{{ - 4}} = \frac{{z + 1}}{1}.\]
Cho mặt phẳng (P) đi qua ba điểm A(0; 1; 1), B(3; 2; 2), C(4; 3; 5).
a) Mặt phẳng (P) có cặp vectơ chỉ phương là \[\overrightarrow {AB} = \left( {3;1;1} \right)\], \[\overrightarrow {AC} = \left( {4;2;4} \right)\].
b) Mặt phẳng (P) có vectơ pháp tuyến là \[\overrightarrow n = \left( {1;4;1} \right)\].
c) Mặt phẳng (P) đi qua điểm M(1; 2; 4).
d) Mặt phẳng (P) vuông góc với đường thẳng d: \[\frac{{x + 2}}{1} = \frac{y}{{ - 4}} = \frac{{z + 1}}{1}.\]
Quảng cáo
Trả lời:

a) Đ |
b) S |
c) Đ |
d) S |
Mặt phẳng (P) đi qua ba điểm A(0; 1; 1), B(3; 2; 2), C(4; 3; 5) nên có cặp vectơ chỉ phương là \[\overrightarrow {AB} = \left( {3;1;1} \right)\], \[\overrightarrow {AC} = \left( {4;2;4} \right)\].
Ta có: \[\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&1\\2&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\4&4\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&1\\4&2\end{array}} \right|} \right) = \left( {2; - 8;2} \right) = 2\left( {1; - 4;1} \right)\].
Vậy \[\overrightarrow n = \left( {1; - 4;1} \right)\] là một vectơ pháp tuyến của mặt phẳng (P).
Phương trình mặt phẳng (P) là:
1(x – 0) – 4(y – 1) + 1(z – 1) = 0 hay x – 4y + z + 3 = 0.
Thay điểm M(1; 2; 4) vào (P), ta được: 1 – 4.2 + 4 + 3 = 0.
Vậy mặt phẳng (P) đi qua điểm M(1; 2; 4).
Đường thẳng d: \[\frac{{x + 2}}{1} = \frac{y}{{ - 4}} = \frac{{z + 1}}{1}\] có vectơ chỉ phương \[\overrightarrow u = \left( {1; - 4;1} \right)\].
Ta có: α = sin(d, (P)) = \[\left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right|\]
\[ = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {1.1 + \left( { - 4} \right).\left( { - 4} \right) + 1.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 4} \right)}^2} + {1^2}} }} = 1\].
⇒ α = 0°.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bề mặt của lều (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9 có tâm I(3; 3; 1), bán kính R = 3.
Gọi d là đường thẳng đi qua I và vuông góc với (P): x = 2.
Ta có vectơ chỉ phương của d là \[{\overrightarrow a _d} = \left( {1;0;0} \right)\].
Suy ra d có phương trình tham số \[\left\{ \begin{array}{l}x = 3 + t\\y = 3\\z = 1\end{array} \right.\].
Gọi A(3 + t; 3; 1) là hình chiếu vuông góc của I trên (P). Thay tọa độ điểm A vào phương trình (P): x = 2, ta được (3 + t) – 2 = 0 hay t = −1, suy ra A(2; 3; 1).
Bán kính r1 của đường tròn có cửa lều là:
r1 = \[\sqrt {{R^2} - I{A^2}} = \sqrt {9 - 1} = 2\sqrt 2 \].
Vậy đường tròn cửa lều có tâm A(2; 3; 1), bán kính r1 = \[2\sqrt 2 \].
Gọi d' là đường thẳng đi qua I và vuông góc với (Q): z = 0.
Ta có vectơ chỉ phương của d' là \[{\overrightarrow u _{d'}}\]= (0; 0; 1)
Suy ra d' có phương trình tham số: \[\left\{ \begin{array}{l}x = 3\\y = 3\\z = 1 + t.\end{array} \right.\]
Gọi B(3; 3; 1 + t) là hình chiếu vuông góc của I trên (Q). Thay tọa độ của điểm B vào phương trình (Q): z = 0 ta được 1 + t = 0, suy ra t = −1, suy ra B(3; 3; 0).
Bán kính r1 của đường tròn sàn lều là: r2 = \[\sqrt {{R^2} - I{B^2}} = \sqrt {9 - 1} = 2\sqrt 2 \].
Vậy đường tròn sàn lều có tâm B(3; 3; 0), bán kính r2 = \[2\sqrt 2 \].
Lời giải
Mặt phẳng (Q) chứa M, N và song song với trục Oy nên có cặp vectơ chỉ phương \[\overrightarrow {MN} = \left( { - 1;1; - 4} \right),\overrightarrow j = \left( {0;1;0} \right)\]. Do đó, mặt phẳng (Q) có vectơ pháp tuyến là:
\[\overrightarrow n = \left[ {\overrightarrow {MN} ,\overrightarrow j } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&{ - 4}\\1&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 1}\\0&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&1\\0&1\end{array}} \right|} \right)\] = (4; 0; −1) là vectơ pháp tuyến của (Q).
Vậy phương trình mặt phẳng (Q) là: 4x – z + 1 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.