Câu hỏi:
19/09/2024 98Cho điểm M(2; 0; 0) và mặt phẳng (P): 2x – y – 2z + 11 = 0.
a) Điểm A(0; 5; 3) thuộc mặt phẳng (P).
b) d(M, (P)) = \[\frac{5}{9}\].
c) Đường thẳng MA vuông góc với (P).
d) Đường thẳng d: \[\frac{{x - 7}}{1} = \frac{{y - 9}}{{ - 2}} = \frac{{z - 31}}{2}\] song song với (P).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Đ |
b) S |
c) S |
d) Đ |
Thay A(0; 5; 3) vào phương trình mặt phẳng (P), ta có: 2.0 – 5 – 2.3 + 11 = 0.
Do đó, điểm A(0; 5; 3) thuộc mặt phẳng (P).
Ta có: d(M, (P)) = \[ = \frac{{\left| {2.2 - 1.0 - 2.0 + 11} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 5\].
Ta có: \[{\overrightarrow u _{MA}} = \left( { - 2;5;3} \right)\], \[\overrightarrow n = \left( {2; - 1; - 2} \right)\] lần lượt là vectơ chỉ phương của đường thẳng d và mặt phẳng (P).
Suy ra sin(MA, (P)) = \[\left| {\cos \left( {{{\overrightarrow u }_{MA}},\overrightarrow n } \right)} \right|\]
\[ = \frac{{\left| { - 2.2 + 5.\left( { - 1} \right) + 3.\left( { - 2} \right)} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {5^2} + {3^2}} .\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{5\sqrt {38} }}{{38}}\].
Do đó đường thẳng MA không vuông góc với (P).
Đường thẳng d: \[\frac{{x - 7}}{1} = \frac{{y - 9}}{{ - 2}} = \frac{{z - 31}}{2}\] có vectơ chỉ phương \[\overrightarrow u = \left( {1; - 2;2} \right)\] và đi qua điểm I(7; 9; 31).
Xét \[\left\{ \begin{array}{l}\overrightarrow n .\overrightarrow u = 2.1 - 1.\left( { - 2} \right) - 2.2 = 0\\2.7 - 9 - 2.31 + 11 = - 46 \ne 0 \Rightarrow M \notin \left( P \right)\end{array} \right.\] ⇒ d song song với (P).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Câu 2:
Cho hai điểm M(1; −1; 5) và N(0; 0; 1). Viết phương trình mặt phẳng (Q) chứa M, N và song song với trục Oy.
Câu 3:
Trong không gian Oxyz (đơn vị trên các trục tọa độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm M(5; 0; 35). Tính khoảng cách từ đầu in phun đến khay đặt vật in có phương trình z – 5 = 0.
Câu 4:
Cho điểm G(1; 2; 3). Viết phương trình mặt phẳng (P) đi qua G và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC.
Câu 6:
Cho hai mặt phẳng (α): x – y + nz – 3 = 0 và (β): 2x + my + 2z + 6 = 0. Với giá trị nào của m, n thì (α) song song với (β)?
Câu 7:
Cho các điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 4). Viết phương trình mặt cầu ngoại tiếp tứ diện OABC (O là gốc tọa độ).
về câu hỏi!