Câu hỏi:
19/09/2024 237Cho mặt cầu (S): (x – 1)2 + (y – 3)2 + (z + 7)2 = 1. Tìm tọa độ các điểm M, N là chân đường vuông góc vẽ từ tâm I của (S) đến các trục tọa độ Oy và Oz.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có tâm I của mặt cầu (S) là: I(1; 3; −7).
Tọa độ các điểm M, N là chân đường vuông góc vẽ từ I đến các trục Oy và Oz lần lượt là M(0; 3; 0), N(0; 0; −7).
Đã bán 1,3k
Đã bán 189
Đã bán 1,5k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Câu 2:
Cho hai điểm M(1; −1; 5) và N(0; 0; 1). Viết phương trình mặt phẳng (Q) chứa M, N và song song với trục Oy.
Câu 3:
Cho các điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 4). Viết phương trình mặt cầu ngoại tiếp tứ diện OABC (O là gốc tọa độ).
Câu 4:
Cho hai mặt phẳng (P): x + 2y – z + 3 = 0 và (Q): x – 4y + (m – 1)z + 1= 0 với m là tham số. Tìm giá trị của tham số m để mặt phẳng (P) vuông góc với mặt phẳng (Q).
Câu 6:
Cho mặt cầu (S): (x – 1)2 + (y – 2)2 + (z – 3)2 = 9. Điểm nào sau đây nằm ngoài mặt cầu (S)?
A. M(−1; 2; 5).
B. N(0; 3; 2).
C. P(−1; 6; −1).
D. Q(2; 4; 5).
Câu 7:
Cho điểm G(1; 2; 3). Viết phương trình mặt phẳng (P) đi qua G và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận