Câu hỏi:
19/09/2024 99Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có mặt cầu (S) có tâm I(1; 0; −2) và bán kính R = \[\sqrt 2 \].
Mặt phẳng (Oxy) có phương trình z = 0.
Ta có: d(I, (Oxy)) = \[\left| { - 2} \right|\] = 2.
b) Ta có: J(−1; 0; 2) là điểm đối xứng của I qua gốc tọa độ O.
Phương trình mặt cầu (S') tâm J, bán kính R = \[\sqrt 2 \] là:
(S'): (x + 1)2 + y2 + (z – 2)2 = 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D.
Cho biết phương trình bề mặt của lều là (S): (x – 3)2 + (y – 3)2 + (z – 1)2 = 9, phương trình mặt phẳng chứa cửa lều là (P): x = 2, phương trình chứa sàn lêu là (Q): z = 0. Tìm tâm và bán kính đường tròn cửa lều và đường tròn sàn lều.
Câu 2:
Cho hai điểm M(1; −1; 5) và N(0; 0; 1). Viết phương trình mặt phẳng (Q) chứa M, N và song song với trục Oy.
Câu 3:
Trong không gian Oxyz (đơn vị trên các trục tọa độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm M(5; 0; 35). Tính khoảng cách từ đầu in phun đến khay đặt vật in có phương trình z – 5 = 0.
Câu 4:
Cho điểm G(1; 2; 3). Viết phương trình mặt phẳng (P) đi qua G và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC.
Câu 6:
Cho hai mặt phẳng (α): x – y + nz – 3 = 0 và (β): 2x + my + 2z + 6 = 0. Với giá trị nào của m, n thì (α) song song với (β)?
Câu 7:
Cho các điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 4). Viết phương trình mặt cầu ngoại tiếp tứ diện OABC (O là gốc tọa độ).
về câu hỏi!