Câu hỏi:

22/09/2024 88

Cho hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) liên tục trên \(\mathbb{R}\) và có đồ thị cắt trục Ox tại đúng ba điểm phân biệt \({\rm{a}},{\rm{b}},{\rm{c}}({\rm{a}} < {\rm{c}} < {\rm{b}}).\) Gọi \({{\rm{S}}_1}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{c}}],{{\rm{S}}_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox tương ứng với \({\rm{x}} \in [{\rm{c}};{\rm{b}}].\) Nếu \({\rm{f}}({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{a}};{\rm{c}}],{\rm{f}}({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{c}};{\rm{b}}]\) thì giá trị của \(\int_{\rm{a}}^{\rm{b}} {\rm{f}} ({\rm{x}})\) bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\int_a^b f (x)dx = \int_a^c f (x)dx + \int_c^b f (x)dx =  - {S_1} - {S_2}.\) Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(4) - {\rm{f}}( - 4)\) bằng

Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(4) - {\rm{f}}( - 4)\) bằng   	A. 12.	B. 3.	C. 24.	D. 6. (ảnh 1)

Xem đáp án » 22/09/2024 779

Câu 2:

Cho hàm số \(y = f(x)\) có đạo hàm là hàm liên tục trên \(\mathbb{R}\) và có đồ thị \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) cắt trục Ox tại đúng ba điểm phân biệt \({\rm{a}},{\rm{b}},{\rm{c}}({\rm{a}} < {\rm{c}} < {\rm{b}}).\) Gọi \({{\rm{S}}_1}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \({\rm{y}} = {{\rm{f}}^\prime }({\rm{x}})\) và trục Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{c}}],{{\rm{S}}_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số \({{\rm{f}}^\prime }({\rm{x}})\) và trục Ox tương ứng với \(x \in [{\rm{c}};{\rm{b}}].\) Nếu \({{\rm{f}}^\prime }({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{a}};{\rm{c}}]\), \({{\rm{f}}^\prime }({\rm{x}}) \ge 0\forall {\rm{x}} \in [{\rm{c}};{\rm{b}}]\) thì giá trị của \(f(b) - f(a)\) bằng 

Xem đáp án » 22/09/2024 338

Câu 3:

Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị cắt trục Ox tại đúng ba điểm phân biệt \({\rm{a}},{\rm{b}},{\rm{c}}({\rm{a}} < {\rm{c}} < {\rm{b}}).\) Gọi \({{\rm{S}}_1}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{c}}],{{\rm{S}}_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox tương ứng với \({\rm{x}} \in [{\rm{c}};{\rm{b}}].\) Nếu \({\rm{f}}({\rm{x}}) \ge 0\forall {\rm{x}} \in [{\rm{a}};{\rm{c}}],{\rm{f}}({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{c}};{\rm{b}}]\) thì giá trị của \(\int_{\rm{a}}^{\rm{b}} {\rm{f}} ({\rm{x}}){\rm{dx}}\) bằng 

Xem đáp án » 22/09/2024 307

Câu 4:

Cho hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) liên tục trên \(\mathbb{R}\) và có đồ thị cắt trục Ox tại đúng ba điểm phân biệt \({\rm{a}},{\rm{b}},{\rm{c}}({\rm{a}} < {\rm{c}} < {\rm{b}}).\) Gọi \({{\rm{S}}_1}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox tương ứng với \({\rm{x}} \in [{\rm{a}};{\rm{c}}],{{\rm{S}}_2}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục Ox tương ứng với \({\rm{x}} \in [{\rm{c}};{\rm{b}}].\) Nếu \({\rm{f}}({\rm{x}}) \le 0\forall {\rm{x}} \in [{\rm{a}};{\rm{c}}],{\rm{f}}({\rm{x}}) \ge 0\forall {\rm{x}} \in [{\rm{c}};{\rm{b}}]\) thì giá trị của \(\int_{\rm{a}}^{\rm{b}} {\rm{f}} ({\rm{x}})\) bằng 

Xem đáp án » 22/09/2024 306

Câu 5:

Hình phẳng được đánh dấu trong hình vẽ sau có diện tích là

Hình phẳng được đánh dấu trong hình vẽ sau có diện tích là   	A. \(S = \int_a^b | h(x) - g(x)|dx + \int_b^c | h(x) - f(x)|dx.\) 	B. \(S = \int_a^c | f(x) - g(x)|dx + \int_b^c | f(x) - h(x)|dx.\) 	C. \(S = \int_a^c | h(x) - g(x)|dx + \int_b^c | h(x) - f(x)|dx.\) 	D. \(S = \int_a^b | f(x) - g(x)|dx + \int_b^c | f(x) - h(x)|dx.\) (ảnh 1)

Xem đáp án » 22/09/2024 253

Câu 6:

Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(6) - {\rm{f}}(1)\) bằng

Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(6) - {\rm{f}}(1)\) bằng   	A. \(4\pi  - 2.\)	B. \(2\pi  + 2.\)	C. \(2\pi  - 4.\)	D. \(2\pi  - 2.\) (ảnh 1)

Xem đáp án » 22/09/2024 250

Câu 7:

Hình phẳng giới hạn bởi đồ thị hàm số \({\rm{y}} = - {{\rm{x}}^2} + 2{\rm{x}}\) và trục Ox có diện tích là 

Xem đáp án » 22/09/2024 239

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store