Trong mỗi ý a), b), c), d) ở mỗi câu, thi sinh chọn đúng hoặc sai
Trong mặt phẳng tọa độ Oxy, xét parabol \(({\rm{P}}):{\rm{y}} = {{\rm{x}}^2} - 4.\)
a) Hoành độ giao điểm của \(({\rm{P}})\) và Ox là -2 và 2.
Trong mặt phẳng tọa độ Oxy, xét parabol \(({\rm{P}}):{\rm{y}} = {{\rm{x}}^2} - 4.\)
a) Hoành độ giao điểm của \(({\rm{P}})\) và Ox là -2 và 2.
Quảng cáo
Trả lời:

a) \({x^2} - 4 = 0 \Leftrightarrow x = \pm 2.\)
=> Đúng
Câu hỏi cùng đoạn
Câu 2:
b) \(\int {\left( {{x^2} - 4} \right)} dx = \frac{{{x^3}}}{3} + 4x + C.\)
b) \(\int {\left( {{x^2} - 4} \right)} dx = \frac{{{x^3}}}{3} + 4x + C.\)

b) \(\int {\left( {{x^2} - 4} \right)} dx = \frac{{{x^3}}}{3} - 4x + C.\)
=> Sai
Câu 3:
c) \(\left| {{x^2} - 4} \right| = {x^2} - 4\forall x \in [ - 2;2]\)
c) \(\left| {{x^2} - 4} \right| = {x^2} - 4\forall x \in [ - 2;2]\)

c) \(\left| {{{\rm{x}}^2} - 4} \right| = 4 - {{\rm{x}}^2}\quad \forall {\rm{x}} \in [ - 2;2]\)
=> Sai
Câu 4:
d) Diện tích hình phẳng giới hạn bởi \(({\rm{P}})\) và Ox bằng \(\frac{{32}}{3}.\)
d) Diện tích hình phẳng giới hạn bởi \(({\rm{P}})\) và Ox bằng \(\frac{{32}}{3}.\)

d) Diện tích hình phẳng giới hạn bởi \(({\rm{P}})\) và Ox bằng:
\(\int_{ - 2}^2 {\left| {{x^2} - 4} \right|} dx = - \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_{ - 2}^2 = \frac{{32}}{3}\)
=> Đúng
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn đáp án C
Lời giải
Đáp số: 42,4.

Gắn hệ toạ độ Oxy với đơn vị của mỗi trục là dm, trục Ox trùng đường thẳng \(\Delta \), gốc toạ độ trùng đỉnh parabol (Hình bên).
Parabol có phương trình chính tắc \({{\rm{y}}^2} = 2{\rm{px}}.\)
Parabol đi qua điểm \({\rm{A}}(3;3)\) nên \({3^2} = 2\) p. 3, suy ra \(2{\rm{p}} = 3.\)
Phương trình parabol là \({y^2} = 3x.\)
Một nửa parabol phía trên trục Ox là đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}}) = \sqrt {3{\rm{x}}} .\)
Thể tích của vật thể bằng
\(\pi \int_0^3 {({\rm{f}}(} {\rm{x}}){)^2}{\rm{dx}} = \pi \int_0^3 3 {\rm{xdx}} = \left. {\pi \frac{{3{{\rm{x}}^2}}}{2}} \right|_0^3 = \frac{{27\pi }}{2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.