Câu hỏi:
11/10/2024 3,634Người ta muốn dựng một khung cổng hình vuông \[ABCD\] có độ dài cạnh bằng \[3{\rm{ cm}}\] được bao bởi một khung thép có dạng nửa đường tròn tâm \(F\) bán kính \[FA\] (như hình 3).
a) Độ dài đoạn thẳng \[OA\] là \(1,5\sqrt 2 \;\,{\rm{m}}\).
b) Độ dài đoạn thẳng \(HG = 3\sqrt 5 \;\,{\rm{m}}\).
c) Độ dài cung \[GAH\] là \(3\sqrt 5 \pi \,\,{\rm{m}}\).
Câu hỏi trong đề: Ôn thi Cấp tốc 789+ vào 10 môn Toán (Đề 2) !!
Quảng cáo
Trả lời:
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
a) Ta có \[ABCD\] là hình vuông nên \(\widehat {ABC} = \widehat {ADC} = 90^\circ \) và \(BC = CD = AD = AB = 3{\rm{\;m}}\).
Xét \(\Delta ABC\) vuông tại \(B\), theo định lí Pythagore, ta có:
\(A{C^2} = A{B^2} + A{C^2} = {3^2} + {3^2} = 18.\)
Suy ra \(AC = \sqrt {18} = 3\sqrt 2 {\rm{\;(m)}}{\rm{.}}\)
Do đó \(AO = \frac{1}{2}AC = \frac{1}{2} \cdot 3\sqrt 2 = 1,5\sqrt 2 {\rm{\;(m)}}{\rm{.}}\)b) Ta có \(F\) là trung điểm của \(CD\) nên \(FD = FC = \frac{1}{2}DC = \frac{1}{2} \cdot 3 = 1,5{\rm{\;(m)}}{\rm{.}}\)
Xét \(\Delta ADF\) vuông tại \(D\), theo định lí Pythagore, ta có:
\(F{A^2} = A{D^2} + D{F^2} = {3^2} + 1,{5^2} = 11,25\).
Suy ra \(FA = \sqrt {11,25} = 1,5\sqrt 5 {\rm{\;(m)}}{\rm{.}}\)
Do đó \(HG = 2FA = 2 \cdot 1,5\sqrt 5 = 3\sqrt 5 {\rm{\;(m)}}{\rm{.}}\)
c) Độ dài cung \[GAH\] là \(\pi \cdot FA = \pi \cdot 1,5\sqrt 5 = 1,5\sqrt 5 \pi {\rm{\;(m)}}{\rm{.}}\)
d) Diện tích cần sơn là \(\frac{1}{2}\pi \cdot F{A^2} - {S_{ABCD}} = \frac{1}{2} \cdot 3,14 \cdot {\left( {1,5\sqrt 5 } \right)^2} - {3^2} = 8,6625{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Số tiền sơn là \(8,6625 \cdot 30\,\,000 \approx 260\,\,000\) (đồng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: \(76{\rm{\;m}}.\)
Ta có \(Bx\) và \(AC\) cùng nằm trên phương ngang nên \(Bx\,{\rm{//}}\,AC,\) do đó \[\widehat {ACB} = \widehat {xBC} = 20^\circ ;\] \(\widehat {ADB} = \widehat {xBD} = 30^\circ \) (các cặp góc so le trong).
Xét tam giác \(ABC\) vuông tại \(A\), ta có \[AC = AB \cdot \cot C = \frac{{AB}}{{\tan C}} = \frac{{75}}{{\tan 20^\circ }}{\rm{\;(m)}}{\rm{.}}\]
Xét tam giác \(ABD\) vuông tại \(A\), ta có \(AD = AB \cdot \cot D = \frac{{AB}}{{\tan D}} = \frac{{75}}{{\tan 30^\circ }}{\rm{\;(m)}}{\rm{.}}\)
Ta có \(CD = AC - AD = \frac{{75}}{{\tan 20^\circ }} - \frac{{75}}{{\tan 30^\circ }} \approx 76{\rm{\;(m)}}{\rm{.}}\)
Vậy con tàu đã đi được xấp xỉ \(76{\rm{\;(m)}}\) giữa hai lần quan sát.
Lời giải
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
a) Tổng số quyển vở đã mua là 500 quyển nên \(x + y = 500\).
b) Tổng số tiền nhà trường mua 500 quyển vở là 4 200 000 đồng nên \(8\,\,000x + 9\,\,000y = 4\,\,200\,\,000\) hay \(8x + 9y = 4\,\,200\)
c) Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y = 500}\\{8x + 9y = 4\,\,200.}\end{array}} \right.\)
Sử dụng máy tính cầm tay giải hệ phương trình (1) ta được \(\left\{ {\begin{array}{*{20}{l}}{x = 300}\\{y = 200}\end{array}} \right.\) (thỏa mãn điều kiện).
d) Gọi \(u,\,\,v\) lần lượt là số học sinh Xuất sắc và số học sinh Giỏi \(\left( {u,\,\,v \in {\mathbb{N}^*}} \right)\).
Mỗi học sinh Xuất sắc được thưởng 02 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai nên ta có phương trình \(2u + v = 300.\)
Mỗi học sinh Giỏi được thưởng 01 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai nên ta có phương trình \(u + v = 200.\)
Ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{2u + v = 300}\\{u + v = 200}\end{array}} \right.\) (2).
Sử dụng máy tính cầm tay giải hệ phương trình (2) ta được \(\left\{ {\begin{array}{*{20}{l}}{u = 100}\\{v = 100}\end{array}} \right.\) (thỏa mãn điều kiện).
Vậy có tổng \(100 + 100 = 200\) học sinh Xuất sắc và Giỏi, chiếm \(40\% \) tổng số học sinh cả trường.
Do đó, tổng số học sinh của trường là \(200:40\% = 500\) (học sinh).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
123 bài tập Nón trụ cầu và hình khối có lời giải
50 bài tập Một số yếu tố xác suất có lời giải
Đề thi tham khảo môn Toán vào 10 tỉnh Quảng Bình năm học 2025-2026
Đề thi minh họa (Dự thảo) TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đồng Nai
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_TP Hà Nội
Đề thi thử TS vào 10 (Lần 2 - Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Hoằng Thanh_Tỉnh Thanh Hóa
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận
Huong Pham
11:17 - 31/12/2024
Dữ kiện điểm O là gì ạ? Cho mình biết với được không?