Câu hỏi:

11/10/2024 611

Cho hai biểu thức \[A = \frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}}\] và \[B = \frac{{x - 5}}{{9{x^2} - 1}}.\] Có bao nhiêu giá trị nào của \[x\] để hai biểu thức \[A\] và \[B\] có cùng một giá trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Theo đề, ta có \[A = B\]

Tức là, \[\frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}} = \frac{{x - 5}}{{9{x^2} - 1}}\] (1)

Điều kiện xác định: \[x \ne \frac{1}{3}\] và \[x \ne - \frac{1}{3}.\]

Từ (1), ta có: \[\frac{3}{{3x + 1}} - \frac{2}{{3x - 1}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\]

\[\frac{{3\left( {3x - 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} - \frac{{2\left( {3x + 1} \right)}}{{\left( {3x - 1} \right)\left( {3x + 1} \right)}} = \frac{{x - 5}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}}\]

\[3\left( {3x - 1} \right) - 2\left( {3x + 1} \right) = x - 5\]

\[9x - 3 - 6x - 2 = x - 5\]

\[2x = 0\]

\[x = 0\] (thỏa mãn điều kiện xác định).

Vậy khi \[x = 0\] thì \[A = B.\]

Do đó ta chọn phương án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Điều kiện xác định: \[x \ne 2\] và \[x \ne 3.\]

\[\frac{2}{{x - 2}} - \frac{3}{{x - 3}} = \frac{{3x - 20}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}\]

\[\frac{{2\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {x - 2} \right)}} - \frac{{3\left( {x - 2} \right)}}{{\left( {x - 3} \right)\left( {x - 2} \right)}} = \frac{{3x - 20}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}\]

\[2\left( {x - 3} \right) - 3\left( {x - 2} \right) = 3x - 20\]

\[2x - 6 - 3x + 6 = 3x - 20\]

\[ - 4x = - 20\]

\[x = 5.\]

Ta thấy \[x = 5\] thỏa mãn điều kiện của phương trình đã cho.

Vậy phương trình đã cho có một nghiệm là \[x = 5.\]

Do đó ta chọn phương án B.

Câu 2

I. Nhận biết

Phương trình nào sau đây là phương trình tích?

Lời giải

Đáp án đúng là: C

Phương trình tích là \(\left( {x + 5} \right)\left( {x - 3} \right) = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phương trình \(3\left( {x - 5} \right) - 2x\left( {5 - x} \right) = 0\) biến đổi về phương trình tích có dạng là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phương trình \[\frac{{x + 6}}{{x + 5}} + \frac{3}{2} = 2\] có nghiệm là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay