Quảng cáo
Trả lời:
Đáp án đúng là: D
Dựa vào đồ thị hàm số ta thấy đồ thị hàm số có tiệm cận đứng x = −1 và đi qua O(0; 0) và (−2; 4).
Thay tọa độ O(0; 0) và (−2; 4) vào các hàm số ta thấy đáp án D thảo mãn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Gọi \(p\) là nửa chu vi tam giác \(DHF\).
Ta có: \(DF = CH = x,{\rm{ }}FH = 30 - 2x \Rightarrow p = 15.\)
Thể tích khối lăng trụ như hình vẽ là
\(V = {S_{\Delta FDH}}.EF = 30\sqrt {15(15 - x)(15 - x)(15 - 30 + 2x)} \)\( = 30\sqrt {15{{(15 - x)}^2}(2x - 15)} .\)
Xét hàm số \(f(x) = {(15 - x)^2}(2x - 15)\),\(x \in \left( {\frac{{15}}{2};15} \right)\).
\[f'(x) = - 2(15 - x)(2x - 15) + 2{(15 - x)^2} = - 2(15 - x)(3x - 30)\]; \(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10\left( {TM} \right)\\x = 15\left( {KTM} \right)\end{array} \right.\).
Bảng biến thiên:

Dựa vào bảng biến thiên, ta thấy: \(\mathop {\max }\limits_{\left( {\frac{{15}}{2};15} \right)} f(x) = 125\) khi \(x = 10.\)
Do đó thể tích khối lăng trụ như hình vẽ lớn nhất: \({V_{\max }} = 750\sqrt 3 {\rm{ (c}}{{\rm{m}}^3}).\) Khi đó: \(x = 10{\rm{ (cm)}}{\rm{.}}\)
Lời giải
Đáp án đúng là: B
Dựa vào bảng biến thiên ta thấy đồ thị hàm số có tiệm cận đứng là x = −4.
Đồ thị hàm số đi qua hai điểm (−10; 24) và (2; 0) nên thay tọa độ 2 điểm vào các hàm số ta thấy đáp án B thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.