Câu hỏi:

14/10/2024 696

Cho hàm số \[y = \frac{{ax + b}}{{cx + d}}\] có đồ thị như trong hình bên dưới. Biết rằng \[a\] là số thực dương, hỏi trong các số \[b,\,\,c,\,\,d\] có tất cả bao nhiêu số dương?

Cho hàm số  y = (a x + b) / (c x + d)  có đồ thị như trong hình bên dưới. Biết rằng  a  là số thực dương, hỏi trong các số  b , c , d  có tất cả bao nhiêu số dương? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Tiệm cận ngang của đồ thị nằm phía trên Ox nên \[y = \frac{a}{c} > 0\] mà \[a > 0 \Rightarrow c > 0\].

Tiệm cận đứng của đồ thị nằm bên trái Oy nên \[x = - \frac{d}{c} < 0 \Rightarrow \frac{d}{c} > 0\] mà \[c > 0 \Rightarrow d > 0\].

Giao điểm của đồ thị hàm số với Oy là \[\left( {0\,;\,\frac{b}{d}} \right)\] nằm dưới O nên \[\frac{b}{d} < 0\] mà \[d > 0 \Rightarrow b < 0\].

Vậy \[b < 0,\,\,c > 0,\,\,d > 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi \(p\) là nửa chu vi tam giác \(DHF\).

Ta có: \(DF = CH = x,{\rm{ }}FH = 30 - 2x \Rightarrow p = 15.\)

Thể tích khối lăng trụ như hình vẽ là

\(V = {S_{\Delta FDH}}.EF = 30\sqrt {15(15 - x)(15 - x)(15 - 30 + 2x)} \)\( = 30\sqrt {15{{(15 - x)}^2}(2x - 15)} .\)

Xét hàm số \(f(x) = {(15 - x)^2}(2x - 15)\),\(x \in \left( {\frac{{15}}{2};15} \right)\).

\[f'(x) = - 2(15 - x)(2x - 15) + 2{(15 - x)^2} = - 2(15 - x)(3x - 30)\]; \(f'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10\left( {TM} \right)\\x = 15\left( {KTM} \right)\end{array} \right.\).

Bảng biến thiên:

Một tấm kẽm hình vuông  A B C D  có cạnh bằng  30 ( c m ) .  Người ta gập tấm kẽm theo hai cạnh  E F  và  G H  cho đến khi  A D  và  B C  trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. Giá trị của  x  để thể tích khối lăng trụ lớn nhất là (ảnh 2)

Dựa vào bảng biến thiên, ta thấy: \(\mathop {\max }\limits_{\left( {\frac{{15}}{2};15} \right)} f(x) = 125\) khi \(x = 10.\)

Do đó thể tích khối lăng trụ như hình vẽ lớn nhất: \({V_{\max }} = 750\sqrt 3 {\rm{ (c}}{{\rm{m}}^3}).\) Khi đó: \(x = 10{\rm{ (cm)}}{\rm{.}}\)

Câu 2

Lời giải

Đáp án đúng là: B

Dựa vào bảng biến thiên ta thấy đồ thị hàm số có tiệm cận đứng là x = −4.

Đồ thị hàm số đi qua hai điểm (−10; 24) và (2; 0) nên thay tọa độ 2 điểm vào các hàm số ta thấy đáp án B thỏa mãn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP