Câu hỏi:
21/10/2024 129Trong Vật lí, quãng đường \(S\) (tính bằng mét) của một vật rơi tự do được cho bởi công thức\(S = 4,9{t^2}\), trong đó \[t\] là thời gian rơi (tính bằng giây). Thời gian để vật chạm đất nếu được thả rơi tự do từ độ cao 122,5 mét là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Quãng đường vật rơi tự do từ độ cao 122,5 mét đến khi chạm đất là \[S = 122,5\] (mét).
Từ công thức \(S = 4,9{t^2}\), ta có:
\(122,5 = 4,9{t^2}\)
\({t^2} = \frac{{122,5}}{{4,9}}\)
\({t^2} = 25\)
\(t = \sqrt {25} \)
\(t = 5\) (giây)
Vậy sau 5 giây thì vật sẽ chạm đất nếu được thả rơi tự do từ độ cao 122,5 mét.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Rút gọn của biểu thức \(\sqrt {{x^2}} + x - 2024\) với \(x < 0\) là
Câu 2:
Vận tốc m/s của một vật đang bay được cho bởi công thức
\(v = \sqrt {\frac{{2E}}{m}} \).
Trong đó \[E\] là động năng của vật (tính bằng Joule, kí hiệu là J);
\[m\] là khối lượng của vật \[\left( {{\rm{kg}}} \right)\].
Vận tốc bay của một vật khi biết vật đó có khối lượng 3 kg và động năng 54 J là
Câu 3:
III. Vận dụng
Đại Kim tự tháp Giza là Kim tự tháp Ai Cập lớn nhất và là lăng mộ của Vương triều thứ Tư của pharaoh Khufu. Nền kim tự tháp có dạng hình vuông với diện tích khoảng 53052 m2. Độ dài cạnh của nền kim tự tháp đó là (làm tròn kết quả đến hàng phần mười)
Câu 4:
Sử dụng máy tính cầm tay, ta tính được giá trị của biểu thức \[\sqrt 2 + \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 4 }}{3}\] là bao nhiêu? (kết quả làm tròn đến hai chữ số thập phân)
Câu 6:
Giá trị biểu thức \(\sqrt {\frac{{1 - 2x}}{{{x^2}}}} \) khi \(x = - 2\) là
về câu hỏi!