Cho tam giác nhọn ABC có các đường cao BE, CF. Một đường tròn (O) đi qua hai điểm E, F và cắt các tia đối của hai tia BF, CE lần lượt tại X và Y. Chứng minh rằng XY song song với BC.
Cho tam giác nhọn ABC có các đường cao BE, CF. Một đường tròn (O) đi qua hai điểm E, F và cắt các tia đối của hai tia BF, CE lần lượt tại X và Y. Chứng minh rằng XY song song với BC.
Quảng cáo
Trả lời:

Vì các tam giác vuông BED và BFC có chung cạnh huyền BC nên bốn điểm B, F, E, C cùng nằm trên đường tròn đường kính BC.
Do đó BFEC là tứ giác nội tiếp đường tròn bán kính BC.
Vì tổng các góc đối nhau của các tứ giác nội tiếp BFEC và XFEY bằng 180° nên ta có:
.
Do đó BC // XY (do hai góc đồng vị bằng nhau).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.