Câu hỏi:
12/11/2024 105Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương đối là
Quảng cáo
Trả lời:
Đáp án đúng là: B
Đường tròn \(\left( I \right)\) có bán kính \[R = \frac{{12}}{2} = 6{\rm{\;(dm)}}{\rm{.}}\]
Đường tròn \(\left( J \right)\) có bán kính \[R' = \frac{{18}}{2} = 9{\rm{\;(dm)}}{\rm{.}}\]
Ta có \[R + R' = 6 + 9 = 15{\rm{\;(dm)}}{\rm{.}}\]
Do đó \[R + R' = IJ.\]
Vậy hai đường tròn \[\left( I \right),\,\,\left( J \right)\] tiếp xúc ngoài với nhau.
Do đó ta chọn phương án B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Kẻ \[OH \bot AB\] tại \[H.\]
Vì khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}\] nên ta có \[OH = 3{\rm{\;cm}}.\]
Áp dụng định lí Pythagore cho tam giác \[OHB\] vuông tại \[H,\] ta được: \[O{H^2} + H{B^2} = O{B^2}.\]
Suy ra \[H{B^2} = O{B^2} - O{H^2} = {R^2} - O{H^2} = {5^2} - {3^2} = 16\]. Do đó \[HB = 4{\rm{\;(cm)}}{\rm{.}}\]
Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]
Suy ra \[AB = 2 \cdot HB = 2 \cdot 4 = 8{\rm{\;(cm)}}{\rm{.}}\]
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: B
Bán kính của đường tròn \(\left( O \right)\) là: \(7:2 = 3,5{\rm{\;(cm)}}{\rm{.}}\)
Ta có \(OI = 1{\rm{\;cm}} < 4{\rm{\;cm}} - 3,5{\rm{\;cm}}\)
Do đó đường tròn \(\left( I \right)\) đựng đường tròn \(\left( O \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.