Câu hỏi:

12/11/2024 132 Lưu

Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương đối là

A. tiếp xúc trong.

B. tiếp xúc ngoài.
C. ở ngoài nhau.
D. đựng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Cho đường tròn  ( I ; R )  có đường kính  12 d m  và đường tròn  ( J ; R ′ )  có đường kính  18 d m .  Nếu  I J = 15 d m  thì hai đường tròn  ( I ) , ( J )  có vị trí tương đối là (ảnh 1)

Đường tròn \(\left( I \right)\) có bán kính \[R = \frac{{12}}{2} = 6{\rm{\;(dm)}}{\rm{.}}\]

Đường tròn \(\left( J \right)\) có bán kính \[R' = \frac{{18}}{2} = 9{\rm{\;(dm)}}{\rm{.}}\]

Ta có \[R + R' = 6 + 9 = 15{\rm{\;(dm)}}{\rm{.}}\]

Do đó \[R + R' = IJ.\]

Vậy hai đường tròn \[\left( I \right),\,\,\left( J \right)\] tiếp xúc ngoài với nhau.

Do đó ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho đường tròn  ( O )  có bán kính  R = 5 c m .  Khoảng cách từ tâm đến dây  A B  là  3 c m .  Độ dài dây  A B  bằng (ảnh 1)

Kẻ \[OH \bot AB\] tại \[H.\]

Vì khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}\] nên ta có \[OH = 3{\rm{\;cm}}.\]

Áp dụng định lí Pythagore cho tam giác \[OHB\] vuông tại \[H,\] ta được: \[O{H^2} + H{B^2} = O{B^2}.\]

Suy ra \[H{B^2} = O{B^2} - O{H^2} = {R^2} - O{H^2} = {5^2} - {3^2} = 16\]. Do đó \[HB = 4{\rm{\;(cm)}}{\rm{.}}\]

Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]

Suy ra \[AB = 2 \cdot HB = 2 \cdot 4 = 8{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án B.

Lời giải

Đáp án đúng là: C

Cho đường tròn  ( O ; R )  có hai dây  A B , C D  vuông góc với nhau tại  M .  Giả sử  A B = 16 c m , C D = 12 c m , M C = 2 c m .  Kẻ  O H ⊥ A B  tại  H ,   O K ⊥ C D  tại  K .  Khi đó diện tích tứ giác  O H M K  bằng (ảnh 1)

Tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R)\] có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác. Do đó \[H\] là trung điểm \[AB.\]

Vì vậy \[HA = HB = \frac{{AB}}{2} = \frac{{16}}{2} = 8{\rm{\;(cm)}}{\rm{.}}\]

Chứng minh tương tự, ta được \[KC = KD = \frac{{CD}}{2} = \frac{{12}}{2} = 6{\rm{\;(cm)}}{\rm{.}}\]

Ta có \[KC = KM + MC.\] Suy ra \[KM = KC - MC = 6 - 2 = 4{\rm{\;(cm)}}{\rm{.}}\]

Tứ giác \[OHMK\] có: \[\widehat {OKM} = \widehat {KMH} = \widehat {OHM} = 90^\circ \] nên tứ giác \[OHMK\] là hình chữ nhật.

Do đó \[OH = KM = 4{\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OHB\] vuông tại \[H,\] ta được:

\[O{B^2} = O{H^2} + H{B^2} = {4^2} + {8^2} = 80\]. Suy ra \[R = OB = 4\sqrt 5 {\rm{\;(cm)}}{\rm{.}}\]

Áp dụng định lí Pythagore cho tam giác \[OKD\] vuông tại \[K,\] ta được: \[O{D^2} = O{K^2} + K{D^2}.\]

Suy ra \[O{K^2} = O{D^2} - K{D^2} = {R^2} - K{D^2} = {\left( {4\sqrt 5 } \right)^2} - {6^2} = 44\]

Do đó \[OK = 2\sqrt {11} {\rm{\;(cm)}}{\rm{.}}\]

Vậy diện tích hình chữ nhật \[OHMK\] là: \[S = KM \cdot OK = 4 \cdot 2\sqrt {11} = 8\sqrt {11} {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Do đó ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP