Câu hỏi:

13/11/2024 156 Lưu

Cho bảng sau với \[R\] là bán kính của đường tròn, \[d\] là khoảng cách từ tâm đến đường thẳng:

\[R\]

\[d\]

Vị trí tương đối của đường thẳng và đường tròn

5 cm

4 cm

(1)

8 cm

(2)

Tiếp xúc nhau

Điền vào các vị trí (1), (2) trong bảng trên là

A. (1): Cắt nhau; (2): 8 cm.

B. (1): 9 cm; (2): không cắt nhau.

C. (1): Cắt nhau; (2): 6 cm.

D. (1): Không cắt nhau; (2): 6 cm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

⦁ Vì \[4{\rm{\;cm}} < 5{\rm{\;cm}}\] nên \[d < R.\] Suy ra đường thẳng cắt đường tròn.

⦁ Vì đường thẳng tiếp xúc với đường tròn nên \[d = R.\] Suy ra \[d = 8{\rm{\;cm}}.\]

Do đó ở vị trí (1) ta điền “Cắt nhau”; ở vị trí (2) ta điền “8 cm”.

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[OA \bot BC.\]

B. \[OA\] là đường trung trực của đoạn \[BC.\]

C. \[AB = AC.\]

D. \[OA \bot BC\] tại trung điểm của \[OA.\]

Lời giải

Đáp án đúng là: D

Hai tiếp tuyến tại  B  và  C  của đường tròn  ( O ; R )  cắt nhau tại  A .  Khẳng định nào sau đây là sai? (ảnh 1)

Gọi \[H\] là giao điểm của \[BC\] và \[OA.\]

Xét đường tròn \[\left( O \right)\] có hai tiếp tuyến tại \[B\] và \[C\] cắt nhau tại \[A\] nên áp dụng tính chất hai tiếp tuyến cắt nhau, ta được \[AB = AC.\] Do đó điểm \[A\] nằm trên đường trung trực của đoạn \[BC\] (1)

Đường tròn \[\left( O \right)\] có \[OB = OC = R\] nên điểm \[O\] nằm trên đường trung trực của đoạn \[BC\] (2)

Từ (1), (2), ta thu được \[OA\] là đường trung trực của đoạn \[BC.\]

Suy ra \[OA \bot BC\] tại \[H\] là trung điểm của \[BC.\]

Do đó ta chưa kết luận được \[H\] có là trung điểm của \[OA\] hay không.

Vì vậy phương án A, B, C đúng và phương án D sai.

Vậy ta chọn phương án D.

Lời giải

Đáp án đúng là: D

Một thủy thủ đang ở trên cột buồm của một con tàu, cách mặt nước biển  10 m .  Biết bán kính Trái Đất là khoảng  6 400 k m .  Tầm nhìn xa tối đa (làm tròn kết quả đến hàng phần nghìn của km) của thủy thủ đó bằng khoảng (ảnh 1)

Đổi: \[10{\rm{\;m}} = 0,01{\rm{\;km}}.\]

Gọi \[O\] là tâm Trái Đất và \[R\] là bán kính Trái Đất. Suy ra \[R = 6400{\rm{\;km}}.\]

Ta có điểm \[B\] biểu diễn vị trí con tàu và điểm \[A\] biểu diễn vị trí của thủy thủ.

Suy ra \[h = AB = 10{\rm{\;(m)}}{\rm{.}}\]

Lại có điểm \[A\] biểu diễn vị trí của thủy thủ và điểm \[C\] biểu diễn điểm xa nhất mà thủy thủ nhìn thấy. Khi đó độ dài đoạn \[AC\] gọi là tầm nhìn xa tối đa từ điểm \[A.\]

Vì \[AC\] là tiếp tuyến của đường tròn \[\left( {O;R} \right)\] tại \[C\] nên \[AC \bot OC\] tại \[C.\]

Áp dụng định lí Pythagore cho tam giác \[AOC\] vuông tại \[C,\] ta được: \[O{A^2} = A{C^2} + O{C^2}.\]

Suy ra \[A{C^2} = O{A^2} - O{C^2} = {\left( {OB + AB} \right)^2} - O{C^2}\]

\[A{C^2} = {\left( {R + h} \right)^2} - {R^2} = {\left( {6\,\,400 + 0,01} \right)^2} - 6\,\,{400^2} = 128,0001.\]

Khi đó \[AC \approx 11,314{\rm{\;(km)}}{\rm{.}}\]

Do đó tầm nhìn xa tối đa của thủy thủ đó bằng khoảng \[11,314{\rm{\;km}}.\]

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Khoảng cách từ điểm đó đến hai tiếp điểm bằng nhau

B. Tia nối từ điểm đó tới tâm là tia phân giác của góc tạo bởi hai bán kính

C. Tia nối từ tâm tới điểm đó là tia phân giác của góc tạo bởi hai tiếp tuyến

D. Cả A, B, C đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[d\] là tiếp tuyến của \[\left( O \right).\]

B. \[d\] cắt \[\left( O \right)\] tại hai điểm phân biệt.

C. \[d\] tiếp xúc với \[\left( O \right)\] tại \[O.\]

D. Cả A, B, C đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP