Câu hỏi:
13/11/2024 2,128Cho đường tròn \(\left( O \right)\) đi qua ba điểm \(A,\,\,B,\,\,C\). Biết \(\widehat {ACB} = 56^\circ ,\) số đo của cung nhỏ \(AB\) là
Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét đường tròn \(\left( O \right)\) ta có \[\widehat {ACB},\,\,\widehat {AOB}\] lần lượt là góc nội tiếp và góc ở tâm chắn cung nhỏ \[AB\].
Do đó \[\widehat {AOB} = 2\widehat {ACB} = 2 \cdot 56^\circ = 112^\circ .\] hay
Vậy số đo của cung nhỏ \[AB\] là: O10-2024-GV154
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Vì \[\widehat {ABC}\] là góc nội tiếp chắn cung \(AC\) nên ta có
Số đo của nửa đường tròn là
Số đo của cung \[BC\] là:
Lời giải
Đáp án đúng là: B
Đường tròn \[\left( O \right)\] có \[\widehat {CDB}\] và \[\widehat {CAB}\] là hai góc nội tiếp cùng chắn cung \[CB\] nên \(\widehat {CDB} = \widehat {CAB} = 45^\circ \).
Do \[\widehat {DCB}\] là góc nội tiếp chắn nửa đường tròn \[\left( O \right)\] nên \(\widehat {DCB} = 90^\circ \).
Xét \(\Delta DCB\) có: \(\widehat {CBD} + \widehat {CDB} + \widehat {DCB} = 180^\circ \) (tổng ba góc của một tam giác)
Suy ra \(\widehat {CBD} = 180^\circ - \widehat {CDB} - \widehat {DCB} = 180^\circ - 45^\circ - 90^\circ = 45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.