Câu hỏi:

13/11/2024 237

Cho tam giác \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( {O;{\rm{ }}R} \right)\], đường cao \[AH\], biết \[AB = 12{\rm{ cm}}\], \[AC = 15\,\,{\rm{cm}}\], \[AH = 6\,\,{\rm{cm}}\]. Đường kính của đường tròn \[\left( O \right)\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác  A B C  có ba đỉnh nằm trên đường tròn  ( O ; R ) , đường cao  A H , biết  A B = 12 c m ,  A C = 15 c m ,  A H = 6 c m . Đường kính của đường tròn  ( O )  bằng (ảnh 1)

Kẻ đường kính \[AD\] của đường tròn \(\left( O \right)\).

Xét đường tròn \[\left( O \right)\] có \(\widehat {ACB} = \widehat {ADB}\)  (hai góc nội tiếp cùng chắn cung \[AB\]) và \(\widehat {ABD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Xét \[\Delta ACH\] và \[\Delta ADB\] có:

\(\widehat {AHC} = \widehat {ABD} = 90^\circ ,\) \(\widehat {ACH} = \widehat {ADB}\)

Do đó (g.g).

Suy ra \(\frac{{AC}}{{AD}} = \frac{{AH}}{{AB}}\) nên \(AD = \frac{{AB \cdot AC}}{{AH}} = \frac{{12 \cdot 15}}{6} = 30\,\,({\rm{cm}}).\)

Vậy đường kính của đường tròn là 30 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho nửa đường tròn đường kính  A B  và điểm  C  thuộc nửa đường tròn này sao cho  ˆ A B C = 30 ∘ . Số đo của cung  B C  làO10-2024-GV154 (ảnh 1)

Vì \[\widehat {ABC}\] là góc nội tiếp chắn cung \(AC\) nên ta có

Số đo của nửa đường tròn là

Số đo của cung \[BC\] là:

Lời giải

Đáp án đúng là: C

Cho đường tròn  ( O )  đi qua ba điểm  A , B , C . Biết  ˆ A C B = 56 ∘ ,  số đo của cung nhỏ  A B  là (ảnh 1)

Xét đường tròn \(\left( O \right)\) ta có \[\widehat {ACB},\,\,\widehat {AOB}\] lần lượt là góc nội tiếp và góc ở tâm chắn cung nhỏ \[AB\].

Do đó \[\widehat {AOB} = 2\widehat {ACB} = 2 \cdot 56^\circ = 112^\circ .\] hay

Vậy số đo của cung nhỏ \[AB\] là: O10-2024-GV154

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP