Câu hỏi:

13/11/2024 984 Lưu

Cho tam giác nhọn \[ABC\] có ba đỉnh nằm trên đường tròn \[\left( O \right)\]. Hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Vẽ đường kính \[AF\] và gọi\[M\] là trung điểm \[BC\]. Cho các khẳng định sau:

(i) \(OM \bot BC\).

(ii) \(OM\,{\rm{//}}\,AH\).

(iii) \(HM = \frac{{HF}}{2}\).

Có bao nhiêu khẳng định đúng trong các khẳng định trên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác nhọn  A B C  có ba đỉnh nằm trên đường tròn  ( O ) . Hai đường cao  B D  và  C E  cắt nhau tại  H . Vẽ đường kính  A F  và gọi M  là trung điểm  B C . Cho các khẳng định sau: (ảnh 1)

⦁ Xét đường tròn \[\left( O \right)\] có \(\widehat {ABF} = 90^\circ \) và \(\widehat {ACF} = 90^\circ \) (các góc nội tiếp chắn nửa đường tròn)

Suy ra \[BF \bot \;AB\] và \[CF \bot \;AC\]

Mà \[CE \bot \;AB\] và \[BD \bot \;AC\] nên \[CE\,{\rm{//}}\,BF,\] \[BD\,{\rm{//}}\,CF\].

Suy ra \[BHCF\] là hình bình hành, do đó hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Lại có \[M\] là trung điểm của \[BC\] nên \[M\] cũng là trung điểm của \[HF\] hay \(HM = \frac{{HF}}{2}\).

⦁ Xét \(\Delta AHF\) có \(O,\,\,M\) lần lượt là trung điểm của \(AF,\,\,HF\) nên \[OM\] là đường trung bình của tam giác \[AHF\], do đó \[AH\,{\rm{//}}\,OM\].

⦁ Xét tam giác \[ABC\] có \[BD\] và \[CE\] là hai đường cao cắt nhau tại \[H\] nên \[H\] là trực tâm tam giác \[ABC\]. Suy ra  \[AH \bot \;BC\] mà \[AH\,{\rm{//}}\,OM\], do đó \[OM \bot \;BC\].

Vậy cả ba khẳng định đã cho đều đúng, ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho nửa đường tròn đường kính  A B  và điểm  C  thuộc nửa đường tròn này sao cho  ˆ A B C = 30 ∘ . Số đo của cung  B C  làO10-2024-GV154 (ảnh 1)

Vì \[\widehat {ABC}\] là góc nội tiếp chắn cung \(AC\) nên ta có

Số đo của nửa đường tròn là

Số đo của cung \[BC\] là:

Lời giải

Đáp án đúng là: C

Cho đường tròn  ( O )  đi qua ba điểm  A , B , C . Biết  ˆ A C B = 56 ∘ ,  số đo của cung nhỏ  A B  là (ảnh 1)

Xét đường tròn \(\left( O \right)\) ta có \[\widehat {ACB},\,\,\widehat {AOB}\] lần lượt là góc nội tiếp và góc ở tâm chắn cung nhỏ \[AB\].

Do đó \[\widehat {AOB} = 2\widehat {ACB} = 2 \cdot 56^\circ = 112^\circ .\] hay

Vậy số đo của cung nhỏ \[AB\] là: O10-2024-GV154

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP