Câu hỏi:
13/11/2024 21Cho đường tròn \[\left( {O;10{\rm{\;cm}}} \right)\] đường kính \[AB.\] Điểm \[M \in \left( O \right)\] sao cho \[\widehat {BAM} = 45^\circ .\] Diện tích hình quạt \[AOM\] bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì \[OA = OM = 10{\rm{\;(cm)}}\] nên tam giác \[OAM\] cân tại \[O.\]
Mà \[\widehat {BAM} = 45^\circ \], suy ra tam giác \[OAM\] vuông cân tại \[O.\]
Do đó số đo cung nhỏ \[AM\] là:
Diện tích hình quạt \[AOM\] là: \[S = \frac{n}{{360}}\pi {R^2} = \frac{{90}}{{360}}\pi \cdot {10^2} = 25\pi {\rm{\;(c}}{{\rm{m}}^2}).\]
Vậy diện tích hình quạt \[AOM\] bằng \[25\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Do đó ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Công thức tính diện tích hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính \[R\] và \[r\] (với \[R > r)\] là
Câu 2:
Hình vẽ dưới đây mô tả mặt cắt của một chiếc đèn led có dạng hai hình vành khuyên màu trắng với bán kính các đường tròn lần lượt là \[15{\rm{\;cm}},\,\,18{\rm{\;cm}},\,\,21{\rm{\;cm}},\,\,24{\rm{\;cm}}.\]
Khi đó tổng diện tích hai hình vành khuyên đó bằng
Câu 3:
Diện tích hình vành khuyên nằm giữa hai đường tròn đồng tâm có đường kính lần lượt là \[8{\rm{\;cm}}\] và \[6{\rm{\;cm}}\] bằng
Câu 4:
Cho tam giác \[ABC\] đều có ba đỉnh nằm trên đường tròn \[\left( O \right).\] Độ dài các cung \[AB,BC,CA\] đều bằng \[6\pi {\rm{\;cm}}.\] Diện tích của đường tròn \[\left( O \right)\] là
Câu 5:
Tỉ số giữa độ dài cung \[n^\circ \] và chu vi đường tròn (cùng bán kính) luôn bằng
Câu 6:
Phần hình tròn giới hạn bởi một cung tròn và hai bán kính đi qua hai đầu mút của cung tròn đó được gọi là
Câu 7:
Độ dài cung \[30^\circ \] của một đường tròn có bán kính \[4{\rm{\;dm}}\] là
về câu hỏi!