Câu hỏi:
13/11/2024 129Cho hình vành khuyên giới hạn bởi hai đường tròn \[\left( {O;R} \right)\] và \[\left( {O;r} \right),\] biết rằng \[r = 7{\rm{\;cm}}\] và \[R\] gấp \[3\] lần \[r\]. Diện tích của hình vành khuyên đó bằng
Quảng cáo
Trả lời:
Đáp án đúng là: A
Bán kính \[R = 3r = 3 \cdot 7 = 21{\rm{\;(cm)}}{\rm{.}}\]
Diện tích của hình vành khuyên đó là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{{21}^2} - {7^2}} \right) = 392\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Do đó diện tích của hình vành khuyên đó bằng \[392\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Vậy ta chọn phương án A.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Bán kính của hai đường tròn đồng tâm lần lượt là \[R = \frac{8}{2} = 4{\rm{\;(cm)}}\] và \[r = \frac{6}{2} = 3{\rm{\;(cm)}}{\rm{.}}\]
Diện tích hình vành khuyên cần tìm là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right) = \pi \left( {{4^2} - {3^2}} \right) = 7\pi {\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]
Do đó diện tích hình vành khuyên cần tìm là \[7\pi {\rm{\;c}}{{\rm{m}}^2}.\]
Vậy ta chọn phương án B.
Lời giải
Đáp án đúng là: C
Công thức tính diện tích hình vành khuyên tạo bởi hai đường tròn đồng tâm có bán kính \[R\] và \[r\] (với \[R > r)\] là: \[{S_v} = \pi \left( {{R^2} - {r^2}} \right).\]
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.