Câu hỏi:

13/11/2024 256

Cho đường tròn \[\left( O \right)\] bán kính \[OA.\] Từ trung điểm \[M\] của \[OA\] vẽ dây \[BC \bot OA.\] Biết độ dài đường tròn \[\left( O \right)\] là \[4\pi {\rm{\;cm}}.\] Độ dài cung lớn \[BC\] là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho đường tròn  ( O )  bán kính  O A .  Từ trung điểm  M  của  O A  vẽ dây  B C ⊥ O A .  Biết độ dài đường tròn  ( O )  là  4 π c m .  Độ dài cung lớn  B C  là (ảnh 1)

Ta có \(BC \bot OA\) tại trung điểm \[M\] của \[OA\] nên \(BC\) là đường trung trực của đoạn thẳng \(OA.\)

Do đó \[OB = AB.\]

Mà \[OA = OB\] nên \[OA = OB = AB.\] Suy ra tam giác \[OAB\] là tam giác đều.

Do đó \[\widehat {AOB} = 60^\circ .\]

Chứng minh tương tự, ta được \[\widehat {AOC} = 60^\circ .\]

Ta có

Khi đó số đo cung lớn \[BC\] bằng

Độ dài cung lớn \[BC\] là: \[l = \frac{n}{{360}}C = \frac{{240}}{{360}} \cdot 4\pi = \frac{{8\pi }}{3}{\rm{\;(cm)}}{\rm{.}}\]

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Cho đường tròn  ( O ; R )  và dây  A B = R .  Trên tia đối của tia  B A  lấy điểm  C  sao cho  B C = B A .  Kéo dài  C O  cắt đường tròn  ( O )  lần lượt tại  D , E  ( D  nằm giữa  C , O ). Kết luận nào sau đây là sai? (ảnh 1)

⦁ Xét \[\Delta OAB\] có \[OA = OB = AB = R\] nên \[\Delta OAB\] là tam giác đều.

Khi đó \[\widehat {AOB} = \widehat {OAB} = 60^\circ .\]

Theo bài, điểm \[C\] nằm trên tia đối của tia \[BA\] sao cho \[BC = BA\] nên \[B\] là trung điểm \[AC.\]

Tam giác \[OAC\] có \[OB\] là đường trung tuyến ứng với \(AC\) và \[R = OB = BA = BC = \frac{{AC}}{2}\] nên tam giác \[OAC\] vuông tại \[O.\]

Do đó \[\widehat {AOC} = 90^\circ \] (1)

Vì vậy AD=90°. Do đó phương án C là kết luận đúng.

⦁ Tam giác \[OAC\] vuông tại \[O,\] có: \[\widehat {OAC} + \widehat {OCA} = 90^\circ .\]

Suy ra \[\widehat {OCA} = 90^\circ - \widehat {OAC} = 90^\circ - 60^\circ = 30^\circ \] (2)

Do đó phương án D là kết luận đúng.

⦁ Từ (1), (2), ta thu được \[\widehat {AOD} = 3\widehat {ACD}.\] Do đó phương án A là kết luận đúng.

⦁ Từ (1), ta suy ra \[OA \bot OE\] hay \[\widehat {AOE} = 90^\circ .\]

Ta có BE=BA+AE=BOA^+AOE^=60°+90°=150°120°.

Do đó phương án B là kết luận sai.

Vậy ta chọn phương án B.

Lời giải

Đáp án đúng là: A

Vì mỗi hình quạt tròn có góc ở tâm là \[7,5^\circ \] nên mỗi hình quạt tròn đó ứng với cung \[7,5^\circ .\]

Diện tích mỗi hình quạt tròn là: \[{S_q} = \frac{n}{{360}}\pi {R^2} = \frac{{7,5}}{{360}} \cdot \pi \cdot {5^2} = \frac{{25\pi }}{{48}}{\rm{\;(d}}{{\rm{m}}^2}).\]

Vì \[\frac{{360}}{{7,5}} = 48\] và các hình quạt tròn được tô màu và không được tô màu được sắp xếp xen kẽ nhau nên số hình quạt tròn được tô màu là: \[48:2 = 24\] (hình quạt tròn).

Diện tích tất cả các hình quạt tròn được tô màu là: \[S = 24{S_q} = 24 \cdot \frac{{25\pi }}{{48}} = \frac{{25\pi }}{2}{\rm{\;(d}}{{\rm{m}}^2}).\]

Vậy ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

II. Thông hiểu

Hai tiếp tuyến tại \(B\) và \(C\) của đường tròn \((O)\) cắt nhau tại \(A\). Khẳng định nào sau đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Nếu đường thẳng \[d\] là tiếp tuyến của đường tròn \[\left( O \right)\] tại \[A\] thì

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay