Câu hỏi:

13/11/2024 283

Tâm đường tròn nội tiếp của một tam giác là giao của các đường

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Tâm đường tròn nội tiếp của một tam giác là giao của các đường phân giác trong của tam giác đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Gọi \[O\] là tâm của hình vuông \[ABCD\].

Gọi \[E;{\rm{ }}F;{\rm{ }}K;{\rm{ }}G\] lần lượt là trung điểm của \[AD,{\rm{ }}DC,{\rm{ }}BC,{\rm{ }}AB\].

Đường tròn nội tiếp hình vuông cạnh  a  có bán kính là (ảnh 1)

Khi đó ta có \[OE = OF = OK = OG = \;\frac{a}{2}\] hay \[O\] là tâm đường tròn nội tiếp hình vuông \[ABCD\].

Vậy bán kính đường tròn nội tiếp hình vuông là \(R = \frac{a}{2}\).

Lời giải

Đáp án đúng là: D

Cho  ( O ; 4 )  có dây  A C  bằng cạnh hình vuông nội tiếp và dây  B C  bằng cạnh tam giác đều nội tiếp đường tròn đó (điểm  C  và  A  nằm cùng phía với  B O ). Số đo góc  A C B  là (ảnh 1)

Vì \[AC\] bằng cạnh của hình vuông nội tiếp \[\left( O \right)\] nên số đo cung \[AC = 90^\circ \].

Vì \[BC\] bằng cạnh của tam giác đều nội tiếp \[\left( O \right)\] nên số đo cung \[BC = 120^\circ \].

Từ đó suy ra số đo cung \[AB\] bằng \[120^\circ --90^\circ = 30^\circ \].

Vì góc \[ACB\] là góc nội tiếp chắn cung \[AB\] nên \(\widehat {ACB} = \frac{{30^\circ }}{2} = 15^\circ \).

Vậy \(\widehat {ACB} = 15^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP