Câu hỏi:

16/11/2024 2,253

III. Vận dụng

Cho \[\Delta ABC\] cân tại \[A\] nội tiếp đường tròn \[\left( O \right)\]. Gọi \[E,{\rm{ }}F\] theo thứ tự là hình chiếu của \[\left( O \right)\] lên \[AB\] và \[AC\]. Khẳng định nào sau đây là đúng?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho  Δ A B C  cân tại  A  nội tiếp đường tròn  ( O ) . Gọi  E , F  theo thứ tự là hình chiếu của  ( O )  lên  A B  và  A C . Khẳng định nào sau đây là đúng? (ảnh 1)

Ta có: \[\Delta ABC\] cân tại \[A\] suy ra \[AB = AC\] do đó \[OE = OF\].

Xét hai tam giác vuông \[AOE\] và \[AOF\] có:

Cạnh \[OA\] chung ; \[OE = OF\] (chứng minh trên)

Suy ra \[\Delta AOE = \Delta AOF\] (cạnh huyền – cạnh góc vuông)

Suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng); \(AE = AF\) (hai cạnh tương ứng).

Vậy \[AO\] là phân giác của \(\widehat {BAC}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \[\Delta ABC\] vuông tại \[A\], có \[AB = 6{\rm{ cm}}\] và \[AC = 8{\rm{ cm}}\] ngoại tiếp đường tròn \[\left( {I;{\rm{ }}r} \right)\]. Bán kính \[r\] của đường tròn là

Xem đáp án » 16/11/2024 5,875

Câu 2:

Cho \[\Delta ABC\] vuông tại \[A\], \(\widehat {BAC} = 90^\circ \,\,\left( {AB{\rm{ }} \le {\rm{ }}AC} \right)\). Đường tròn \[\left( I \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[BC\] tại \[D\]. Kết quả nào sau đây là đúng?

Xem đáp án » 16/11/2024 1,975

Câu 3:

Tâm đường tròn nội tiếp của một tam giác là giao của các đường

Xem đáp án » 16/11/2024 1,092

Câu 4:

Đường tròn ngoại tiếp tam giác đều cạnh \(a\) có bán kính bằng

Xem đáp án » 16/11/2024 746

Câu 5:

Cho tam giác \[ABC\] có \[AB = 6\,\,{\rm{cm}}\]; \[BC = 10{\rm{ cm}}\] và \[AC = 8\,\,{\rm{cm}}\]. Bán kính đường tròn ngoại tiếp tam giác \[ABC\] là

Xem đáp án » 16/11/2024 302

Câu 6:

Độ dài cạnh của tam giác đều nội tiếp \[\left( {O;{\rm{ }}R} \right)\] theo \[R\] là

Xem đáp án » 16/11/2024 271
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua