Câu hỏi:

16/11/2024 239

Trong các hình dưới đây.

Trong các hình dưới đây.Trong các hình trên, tứ giác trong hình nào là tứ giác nội tiếp?D. Hình 4. (ảnh 1)

Trong các hình trên, tứ giác trong hình nào là

tứ giác nội tiếp?

D. Hình 4.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Hình 1: Tứ giác \(ABCD\) có \(\widehat A + \widehat C = 115^\circ + 75^\circ = 190^\circ \ne 180^\circ \) nên không phải tứ giác nội tiếp.

Hình 2: Tứ giác \(EFGH\) có \(\widehat F + \widehat H = 85^\circ + 92^\circ = 177^\circ \ne 180^\circ \) nên không phải tứ giác nội tiếp.

Hình 3: Tứ giác \(MNPQ\) có các đỉnh nằm trên đường tròn \(\left( O \right)\) nên là tứ giác nội tiếp.

Hình 4: Tứ giác \(IKSR\) chỉ số đo của góc \(K\) nên chưa đủ điều kiện để kết luận tứ giác nội tiếp hay không.

Vậy Hình 3 là tứ giác nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho nửa đường tròn tâm  O , đường kính  A B = 2 R . Trên tia đối của tia  A B  lấy điểm  E  (khác với điểm  A ). Tiếp tuyến kẻ từ điểm  E  cắt các tiếp tuyến kẻ từ điểm  A  và  B  của nửa đường tròn  ( O )  lần lượt tại  C  và  D . Gọi  M  là tiếp điểm của tiếp tuyến kẻ từ điểm  E . Trong các khẳng định sau, khẳng định nào là sai? (ảnh 1)

Vì \[AC\] là tiếp tuyến của \[\left( O \right)\] nên \(OA \bot AC\) hay \(\widehat {OAC} = 90^\circ \).

Vì \[MC\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MC\) hay \(\widehat {OMC} = 90^\circ \).

Suy ra \(\widehat {OAC} + \widehat {OMC} = 180^\circ \). Do đó \[OACM\] là tứ giác nội tiếp.

Vì \[BD\] là tiếp tuyến của \[\left( O \right)\] nên \(OB \bot BD\) hay \(\widehat {OBD} = 90^\circ \)

Vì \[MD\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MD\) hay \(\widehat {OMD} = 90^\circ \)

Suy ra \(\widehat {OBD} + \widehat {OMD} = 180^\circ \). Do đó \[OMDB\] là tứ giác nội tiếp.

Vậy đáp án D sai.

Câu 2

Lời giải

Đáp án đúng là: C

Ta có \(\widehat {BCE} = \widehat {DCF}\) (hai góc đối đỉnh)

Đặt \(\widehat {BCE} = \widehat {DCF} = x\).

Theo tính chất góc ngoài tam giác, ta có:

\(\widehat {ABC} = \widehat {BCE} + \widehat E = x + 40^\circ \)

\(\widehat {ADC} = \widehat {DCF} + \widehat F = x + 20^\circ \)

Lại có \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (hai góc đối diện của tứ giác nội tiếp)

Suy ra \(\left( {x + 40^\circ } \right) + \left( {x + 20^\circ } \right) = 180^\circ \) hay \(x = 60^\circ \).

Do đó \(\widehat {ABC} = 60^\circ + 40^\circ = 100^\circ \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP