Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
23 lượt thi câu hỏi 60 phút
17 lượt thi
Thi ngay
23 lượt thi
20 lượt thi
Câu 1:
I. Nhận biết
Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\]. Khẳng định nào sau đây là sai?
A. \(\widehat {BDC} = \widehat {BAC}\).
B. \(\widehat {BAC} = \widehat {BAx}\).
C. \(\widehat {DCB} = \widehat {BAx}.\)
D. \(\widehat {ABC} + \widehat {ADC} = 180^\circ .\)
Câu 2:
Trong các hình dưới đây.
Trong các hình trên, tứ giác trong hình nào là
tứ giác nội tiếp?
D. Hình 4.
A. Hình 1.
B. Hình 2.
C. Hình 3.
Câu 3:
Cho nửa đường tròn \[\left( {O;{\rm{ }}R} \right)\] đường kính \[BC\]. Lấy điểm \[A\] trên tia đối của tia \[CB\]. Kẻ tiếp tuyến \[AF,{\rm{ }}Bx\] của nửa kia đường tròn \[\left( O \right)\] (với \[F\] là tiếp điểm). Tia \[AF\] cắt tia \[Bx\] của nửa đường tròn tại \[D\]. Khi đó tứ giác \[OBDF\] là
A. Hình thang.
B. Tứ giác nội tiếp.
C. Hình thang cân.
D. Hình bình hành.
Câu 4:
Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \) thì số đo góc \[BCM\] là
A. \(110^\circ \).
B. \(30^\circ \).
C. \(70^\circ \).
D. \(55^\circ \).
Câu 5:
Cho tam giác \[ABC\] có hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Trong các tứ giác sau, tứ giác nội tiếp là
A. \[AHBC\].
B. \[BCDE\].
C. \[BCDA\].
D. Không có tứ giác nào là tứ giác nội tiếp.
Câu 6:
II. Thông hiểu
Cho đường tròn \[\left( O \right)\] có \[AB\] là đường kính. Trên tia đối của tia \[AB\] lấy điểm \[C\] nằm ngoài đường tròn. Lấy điểm \[M\] bất kì nằm trên đường tròn \[\left( O \right)\]. Gọi \[P\] là giao điểm của \[MB\] và đường vuông góc với \[AB\] tại \[C\]. Chọn khẳng định đúng.
A. Tứ giác \[PMAC\] là tứ giác nội tiếp.
B. Tam giác \[BCM\] vuông.
C. Tam giác \[BCP\] có \[CM\] là đường trung tuyến.
D. Không có khẳng định nào đúng.
Câu 7:
Cho nửa đường tròn tâm \[O\], đường kính \[AB = 2R\]. Trên tia đối của tia \[AB\] lấy điểm \[E\] (khác với điểm \[A\]). Tiếp tuyến kẻ từ điểm \[E\] cắt các tiếp tuyến kẻ từ điểm \[A\] và \[B\] của nửa đường tròn \[\left( O \right)\] lần lượt tại \[C\] và \[D\]. Gọi \[M\] là tiếp điểm của tiếp tuyến kẻ từ điểm \[E\]. Trong các khẳng định sau, khẳng định nào là sai?
A. Tứ giác \[OACM\] là tứ giác nội tiếp.
B. Tứ giác \[OBDM\] là tứ giác nội tiếp.
C. Tứ giác \[ACDB\] là hình thang vuông.
D. Tứ giác \[ACDB\] là tứ giác nội tiếp.
Câu 8:
Cho tứ giác \[ABCD\] có số đo các góc \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\] tương ứng. Trường hợp nào sau đây thì tứ giác \[ABCD\] có thể là tứ giác nội tiếp?
A. \(50^\circ \,;\,\,60^\circ \,;\,\,130^\circ \,;\,\,140^\circ \).
B. \(65^\circ \,;\,\,85^\circ \,;\,\,115^\circ \,;\,\,95^\circ .\)
C. \(82^\circ \,;\,\,90^\circ \,;\,\,98^\circ \,;\,\,100^\circ .\)
D. Không có trường hợp nào .
Câu 9:
Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:
A. Tứ giác \[BEFC\] là tứ giác nội tiếp.
B. Tứ giác \[BEFC\] không nội tiếp.
C. Tứ giác \[AFHE\] là hình vuông.
D. Tứ giác \[AFHE\] không nội tiếp.
Câu 10:
Cho điểm \[A\] nằm ngoài đường tròn \[\left( O \right)\] qua \[A\] kẻ hai tiếp tuyến \[AB\] và \[AC\] với đường tròn (\[B,{\rm{ }}C\] là tiếp điểm). Chọn đáp án đúng:
A. Tứ giác \[ABOC\]là hình thoi.
B. Tứ giác \[ABOC\] nội tiếp.
C. Tứ giác \[ABOC\] không nội tiếp.
D. Tứ giác \[ABOC\] là hình bình hành.
Câu 11:
Cho hình vẽ dưới đây:
Số đo góc \[ABC\] là
A. \(80^\circ \).
B. \(90^\circ \).
C. \(100^\circ \).
D. \(110^\circ \).
Câu 12:
Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại \[K\]. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Khẳng định nào sau đây là đúng?
A. Tứ giác \[AHCK\] là tứ giác nội tiếp.
B. Tứ giác \[AHCK\] là hình bình hành.
C. Tứ giác \[AHCK\] là hình thang.
D. Tứ giác \[AHCK\] là hình thoi.
Câu 13:
III. Vận dụng
Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại K. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tích \[AH.{\rm{ }}AB\] bằng
A. \(4A{O^2}\).
B. \(AD \cdot BD\).
C. \(B{D^2}\).
D. \(A{D^2}\).
Câu 14:
Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại \[K\]. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tam giác \[ACF\] là tam giác
A. cân tại \[F\].
B. cân tại \[C\].
C. cân tại \[A\].
D. đều.
Câu 15:
Cho hình bình hành \[ABCD\]. Đường tròn đi qua ba đỉnh \[A,{\rm{ }}B,{\rm{ }}C\] cắt đường thẳng \[CD\] tại \[P\] (điểm \[P\] khác với điểm \[C\]). Khi đó
A. \[ABCP\] là hình thang cân.
B. \[AP = AD\].
C. \[AP = BC\].
D. Cả A, B, C đều đúng.
5 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com