Câu hỏi:
16/11/2024 13Cho tam giác \[ABC\] có hai đường cao \[BD\] và \[CE\] cắt nhau tại \[H\]. Trong các tứ giác sau, tứ giác nội tiếp là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có
\[BD\] và \[CE\] là đường cao của tam giác \[ABC\] nên \(\widehat {BDC} = \widehat {BEC} = 90^\circ \).
Suy ra tam giác \(BDC\) vuông tại \[D\] và tam giác \(BEC\)vuông tại \(E\).
Suy ra 4 điểm \(B,D,C,E\) cùng nằm trên đường tròn đường kính BC.
Suy ra \(BEDC\) là tứ giác nội tiếp.
Điểm \(D\) nằm trên \(AC\) nên \(ADCB\) không phải là hình tứ giác.
Xét tứ giác \(AHBC\) có:
\(\widehat {HAC} = \widehat {HAD} < 90^\circ \) (do tam giác \(HAD\) vuông tại D)
\(\widehat {HBC} = \widehat {DBC} < 90^\circ \) (do tam giác \(BDC\) vuông tại D)
Suy ra \(\widehat {HAC} + \widehat {HBC} < 180^\circ \).
Vậy tứ giác \(AHBC\) không là tứ giác nội tiếp.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho nửa đường tròn tâm \[O\], đường kính \[AB = 2R\]. Trên tia đối của tia \[AB\] lấy điểm \[E\] (khác với điểm \[A\]). Tiếp tuyến kẻ từ điểm \[E\] cắt các tiếp tuyến kẻ từ điểm \[A\] và \[B\] của nửa đường tròn \[\left( O \right)\] lần lượt tại \[C\] và \[D\]. Gọi \[M\] là tiếp điểm của tiếp tuyến kẻ từ điểm \[E\]. Trong các khẳng định sau, khẳng định nào là sai?
Câu 2:
II. Thông hiểu
Cho đường tròn \[\left( O \right)\] có \[AB\] là đường kính. Trên tia đối của tia \[AB\] lấy điểm \[C\] nằm ngoài đường tròn. Lấy điểm \[M\] bất kì nằm trên đường tròn \[\left( O \right)\]. Gọi \[P\] là giao điểm của \[MB\] và đường vuông góc với \[AB\] tại \[C\]. Chọn khẳng định đúng.
Câu 3:
I. Nhận biết
Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\]. Khẳng định nào sau đây là sai?
Câu 4:
Trong các hình dưới đây.
Trong các hình trên, tứ giác trong hình nào là
tứ giác nội tiếp?
D. Hình 4.
Câu 5:
Cho tứ giác \[ABCD\] có số đo các góc \[A,{\rm{ }}B,{\rm{ }}C,{\rm{ }}D\] tương ứng. Trường hợp nào sau đây thì tứ giác \[ABCD\] có thể là tứ giác nội tiếp?
Câu 6:
Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:
Câu 7:
Cho đường tròn \[\left( O \right)\] đường kính \[AB\]. Gọi \[H\] là điểm nằm giữa \[O\] và \[B\]. Kẻ dây \[CD\] vuông góc với \[AB\] tại \[H\]. Trên cung nhỏ \[AC\] lấy điểm \[E\], kẻ \[CK \bot AE\] tại \[K\]. Đường thẳng \[DE\] cắt \[CK\] tại \[F\]. Tam giác \[ACF\] là tam giác
về câu hỏi!