Câu hỏi:

16/11/2024 222

Cho tam giác \[ABC\] vuông tại \[A\] đường cao \[AH\]. Kẻ \[HE\] vuông góc với \[AB\] tại \[E\], kẻ \[HF\] vuông góc với \[AC\] tại \[F\]. Chọn câu đúng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Cho tam giác  A B C  vuông tại  A  đường cao  A H . Kẻ  H E  vuông góc với  A B  tại  E , kẻ  H F  vuông góc với  A C  tại  F . Chọn câu đúng: (ảnh 1)

Xét tứ giác \[AEHF\] có: \(\widehat A = \widehat E = \widehat F = 90^\circ \)

Suy ra tứ giác \[AEHF\] là hình chứ nhật.

Suy ra tứ giác \[AEHF\] là tứ giác nội tiếp (có tổng hai góc đối diện bằng \(180^\circ \)).

Do đó \(\widehat {AFE} = \widehat {AHE}\) (hai góc nội tiếp cùng chắn cung \[AE\])

Mà \(\widehat {AHE} = \widehat {ABH}\) (cùng phụ góc \[BHE\])

Suy ra \(\widehat {AFE} = \widehat {ABC}\).

Xét tứ giác \[BEFC\] có: \(\widehat {AFE} = \widehat {ABC}\)

Góc \[AFE\] là góc ngoài tại đỉnh \[F\].

Suy ra \[BEFC\] là tứ giác nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Cho nửa đường tròn tâm  O , đường kính  A B = 2 R . Trên tia đối của tia  A B  lấy điểm  E  (khác với điểm  A ). Tiếp tuyến kẻ từ điểm  E  cắt các tiếp tuyến kẻ từ điểm  A  và  B  của nửa đường tròn  ( O )  lần lượt tại  C  và  D . Gọi  M  là tiếp điểm của tiếp tuyến kẻ từ điểm  E . Trong các khẳng định sau, khẳng định nào là sai? (ảnh 1)

Vì \[AC\] là tiếp tuyến của \[\left( O \right)\] nên \(OA \bot AC\) hay \(\widehat {OAC} = 90^\circ \).

Vì \[MC\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MC\) hay \(\widehat {OMC} = 90^\circ \).

Suy ra \(\widehat {OAC} + \widehat {OMC} = 180^\circ \). Do đó \[OACM\] là tứ giác nội tiếp.

Vì \[BD\] là tiếp tuyến của \[\left( O \right)\] nên \(OB \bot BD\) hay \(\widehat {OBD} = 90^\circ \)

Vì \[MD\] là tiếp tuyến của \[\left( O \right)\] nên \(OM \bot MD\) hay \(\widehat {OMD} = 90^\circ \)

Suy ra \(\widehat {OBD} + \widehat {OMD} = 180^\circ \). Do đó \[OMDB\] là tứ giác nội tiếp.

Vậy đáp án D sai.

Câu 2

Lời giải

Đáp án đúng là: C

Ta có \(\widehat {BCE} = \widehat {DCF}\) (hai góc đối đỉnh)

Đặt \(\widehat {BCE} = \widehat {DCF} = x\).

Theo tính chất góc ngoài tam giác, ta có:

\(\widehat {ABC} = \widehat {BCE} + \widehat E = x + 40^\circ \)

\(\widehat {ADC} = \widehat {DCF} + \widehat F = x + 20^\circ \)

Lại có \(\widehat {ABC} + \widehat {ADC} = 180^\circ \) (hai góc đối diện của tứ giác nội tiếp)

Suy ra \(\left( {x + 40^\circ } \right) + \left( {x + 20^\circ } \right) = 180^\circ \) hay \(x = 60^\circ \).

Do đó \(\widehat {ABC} = 60^\circ + 40^\circ = 100^\circ \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP