Câu hỏi:

19/08/2025 1,547 Lưu

Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại vị trí cách bạn nam 3 m, cách bạn nữ 5 m. Cho biết quỹ đạo của quả bóng nằm trong mặt phẳng \(\left( P \right)\) vuông góc với mặt đất. Phương trình của \(\left( P \right)\) trong trong không gian \(Oxyz\) được mô tả như trong hình vẽ có dạng \(ax + 3y + cz + d = 0\). Giá trị của \(a + cd\) là bao nhiêu?

Hai học sinh đang chuyền bóng. Bạn nữ ném bóng cho bạn nam. Quả bóng bay trên không, lệch sang phải và rơi xuống tại (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử vị trí quả bóng rơi là A, B là vị trí bạn nam đứng.

Do đó \(OB = \sqrt {O{A^2} - A{B^2}} = 4\). Suy ra \(A\left( {3;4;0} \right)\).

Mặt phẳng \(\left( P \right)\) đi qua \(O,A\) và vuông góc với mặt đất \(\left( {Oxy} \right)\) có vectơ pháp tuyến là:

\(\overrightarrow {{n_P}} = \left[ {\overrightarrow {OA} ,\overrightarrow k } \right] = \left( {4; - 3;0} \right)\).

Do đó phương trình mặt phẳng \(\left( P \right)\) đi qua \(O\) và có vectơ pháp tuyến \(\overrightarrow {{n_P}} \) có phương trình là: \(4x - 3y = 0\) hay \( - 4x + 3y = 0\).

Suy ra \(a = - 4;c = 0;d = 0\). Vậy  \(a + cd = - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một vật trang trí có dạng một khối tròn xoay được tạo thành khi xoay miền ( R ) (phần gạch chéo trong hình vẽ bên) (ảnh 2)

Chọn hệ trục tọa độ như hình vẽ

Khi đó ta có \(A \equiv O\left( {0;0} \right),B\left( {2;0} \right),I\left( {2;1} \right),J\left( {0;1} \right)\).

Phương trình đường tròn tâm \(J\)\({x^2} + {\left( {y - 1} \right)^2} = 1 \Rightarrow y = 1 + \sqrt {1 - {x^2}} \).

Phương trình đường tròn tâm \(I\)\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 1 \Rightarrow y = 1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} \).

Khi đó \[f\left( x \right) = \left\{ \begin{array}{l}1 + \sqrt {1 - {x^2}} \;\;\;\;\;\;\;\;{\rm{khi}}\;0 \le x < 1\\1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} \;{\rm{khi}}\;1 \le x \le 2\end{array} \right.\].

Do đó \(V = \pi \int\limits_0^1 {{{\left( {1 + \sqrt {1 - {x^2}} } \right)}^2}dx + } \pi \int\limits_1^2 {{{\left( {1 - \sqrt {1 - {{\left( {x - 2} \right)}^2}} } \right)}^2}dx} \approx 10,5\).

Lời giải

a) Đ, b) Đ, c) Đ, d) S

a) \(\overrightarrow {AB} = \left( {2; - 2;0} \right)\).

b) Mặt phẳng \(\left( {Oyz} \right)\)có phương trình: \(x = 0\).

Ta có \(d\left( {A,\left( {Oyz} \right)} \right) = \frac{{\left| 1 \right|}}{{\sqrt {{1^2}} }} = 1\).

c) \(d\left( {B,\left( P \right)} \right) = \frac{{\left| {3 - 1 + 0 + 5} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{7\sqrt 3 }}{3}\).

d) Vì \(\left( Q \right)//\left( P \right)\) nên \(\left( Q \right):x - y + z + d = 0\left( {d \ne 5} \right)\).

\(d\left( {A,\left( Q \right)} \right) = d\left( {B,\left( Q \right)} \right)\) nên \(\frac{{\left| {1 - 3 + 0 + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{\left| {3 - 1 + 0 + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }}\)\( \Leftrightarrow \left| {d - 2} \right| = \left| {d + 2} \right|\)

\( \Leftrightarrow \left[ \begin{array}{l}d - 2 = d + 2\\d - 2 = - d - 2\end{array} \right.\)\( \Leftrightarrow d = 0\).

Vậy \(\left( Q \right):x - y + z = 0\). Suy ra \(b = - 1;c = 1;d = 0\). Do đó \(b + c + d = 0\).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP