Bác Phương chia số tiền 800 triệu đồng của mình cho hai khoản đầu tư. Sau một năm, tổng số tiền lãi thu được là 54 triệu đồng. Lãi suất cho khoản đầu tư thứ nhất là 6%/năm và khoản đầu tư thứ hai là 8%/năm. Tính số tiền bác Phương đầu tư cho mỗi khoản.
Bác Phương chia số tiền 800 triệu đồng của mình cho hai khoản đầu tư. Sau một năm, tổng số tiền lãi thu được là 54 triệu đồng. Lãi suất cho khoản đầu tư thứ nhất là 6%/năm và khoản đầu tư thứ hai là 8%/năm. Tính số tiền bác Phương đầu tư cho mỗi khoản.
Quảng cáo
Trả lời:
Gọi x, y (triệu đồng) là số tiền bác Phương đầu tư cho mỗi khoản (0 <x, y < 800).
Do bác Phương gửi tổng số tiền 800 triệu đồng cho hai khoản đầu tư nên ta có phương trình: x + y = 800 (1).
Lãi suất cho khoản đầu tư thứ nhất là 6%/năm, số tiền đó là 6%.x = 0,06x.
Lãi suất cho khoản đầu tư thứ hai là 8%/năm, số tiền đó là 8%.y = 0,08y.
Tổng số tiền lãi thu được là 54 triệu đồng, nên ta có phương trình:
0,06x + 0,08y = 54 hay 6x + 8y = 5400 (2).
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 800\\6x + 8y = 5400\end{array} \right.\)
Thế x = 800 – y vào phương trình (2) ta được: 6(800 – y) + 8y = 5400 hay 2y = 600
Suy ra y = 300 (thỏa mãn).
Thay y = 300 vào phương trình (1), ta được x = 500 (thỏa mãn).
Vậy số tiền bác Phương đầu tư cho khoản thứ nhất là 500 triệu đồng, khoản thứ hai là 300 triệu đồng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Gọi x, y lần lượt là khối lượng quặng A và B (x > 0, y > 10, tấn).
Theo đề, trộn quặng A với quặng B thì được hỗn hợp chứa \(\frac{8}{{15}}\) sắt nên ta có phương trình 0,6x + 0,5y = \(\frac{8}{{15}}\).(x + y) (1)
Khi tăng quặng A lên 10 tấn và giảm quặng B đi 10 tấn thì thu được hỗn hợp \(\frac{{17}}{{30}}\) sắt nên ta có phương trình 0,6.(x + 10) + 0,5.(y – 10) = \(\frac{{17}}{{30}}\) (x + 10 + y – 10)
Hay 0,6x + 0,5y – 1= \(\frac{{17}}{{30}}\).(x + y) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}0,6x + 0,5y = \frac{8}{{15}}\left( {x + y} \right)\\0,6x + 0,5y - 1 = \frac{{17}}{{30}}\left( {x + y} \right)\end{array} \right.\) hay
\(\left\{ \begin{array}{l}\frac{x}{{15}} - \frac{y}{{30}} = 0{\rm{ }}(3)\\\frac{x}{{30}} - \frac{y}{{15}} = - 1{\rm{ }}(4)\end{array} \right.\).
Nhân cả hai vế của \(\frac{x}{{30}} - \frac{y}{{15}} = - 1\) ta được : \(\frac{x}{{60}} - \frac{y}{{30}} = - \frac{1}{2}\) (5)
Thực hiện trừ theo vế hai phương trình (3) và (5) được \(\frac{x}{{20}} = \frac{1}{2}\) nên x = 10 (thỏa mãn)
Với x = 10 thì y = 20 (thỏa mãn).
Vậy khối lượng quặng A là 10 tấn, quặng B là 20 tấn.
Lời giải
Đáp án đúng là: A
Gọi x, y lần lượt là số lít dung dịch loại I và II cần trộn (0 < x, y < 100, lít).
Theo đề, cần trộn được 100 lít dung dịch nên ta có x + y = 100 (1).
Có 30% dung dịch loại I và 55 % dung dịch loại II cần pha để được dung dịch 50% axit nên ta có phương trình:
30%x + 55%y = 50%(x + y) hay 0,3x + 0,55y = 0,5(x + y)
Suy ra 0,2x – 0,05y = 0 (2)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 100\\0,2x - 0,05y = 0\end{array} \right.\).
Thay x = 100 – y vào (2) ta được 0,3.(100 – y) – 0,05y = 0 suy ra y = 80 (thỏa mãn).
Thay y = 80 vào (1) ta được x = 20 (thỏa mãn).
Vậy dung dịch I cần trộn 20 lít và dung dịch II cần trộn 80 lít.
>Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.