Câu hỏi:

19/12/2024 107

Với mọi x, y, z chứng minh rằng x2 + y2 + z2 ≥ xy + yz + zx.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Xét hiệu, ta có:

P = x2 + y2 + z2 − xy − yz − zx

2P = 2x2 + 2y2 + 2z2 − 2xy − 2yz − 2xz

2P = (x2 – 2xy + y2) + (y2 – 2yz + z2) + (z2 – 2zx + z2)

2P = (x – y)2 + (y – z)2 + (z – x)2 ≥ 0

Suy ra P ≥ 0 hay x2 + y2 + z2 – xy – yz – zx ≥ 0

Vậy x2 + y2 + z2 ≥ xy + yz + xz (đpcm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: 2025 > 2024 nên \[\sqrt {2025} > \sqrt {2024} \].

Cộng hai vế với −\[\sqrt 5 \] ta được \[\sqrt {2025} - \sqrt 5 > \sqrt {2024} - \sqrt 5 \].

b) Ta có: \[\frac{1}{{2024}}\] > \[\frac{1}{{2025}}\].

Cộng hai vế với 2023 ta được \[\frac{1}{{2024}}\] + 2023 > \[\frac{1}{{2025}}\] + 2023.

Lời giải

a) Ta có: a ≥ 2b nên cộng hai vế với a ta được: 2a ≥ a + 2b.

Cộng hai vế với 7 được 2a + 7 > a + 2b + 7.

b) Có a ≥ 2b nên a – 2b ≥ 0.

Xét hiệu 5a + 2b – (4b + 4a) = a – 2b ≥ 0 (thỏa mãn).

Do đó 4b + 4a ≤ 5a + 2b.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay