Câu hỏi:

23/12/2024 109 Lưu

Một con lắc lò xo treo thẳng đứng vào điểm I cố định, quả cầu có khối lượng \(100{\rm{\;g}}\). Con lắc dao động điều hoà theo phương trình \({\rm{x}} = 4{\rm{cos}}10\sqrt {5{\rm{t}}} \left( {{\rm{cm}}} \right)\) với \({\rm{t}}\) tính theo giây. Lấy \({\rm{g}} = 10{\rm{\;m}}/{{\rm{s}}^2}\). Tính độ lớn lực đàn hồi lớn nhất và nhỏ nhất do lò xo tác dụng lên điểm I.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Độ dãn của lò xo khi vật ở vị trí cân bằng: \({\rm{\Delta }}{\ell _0} = \frac{{\rm{g}}}{{{\omega ^2}}} = \frac{{10}}{{500}} = 2{\rm{\;cm}}\)

Biên độ dao động \(A = 4{\rm{\;cm}}\)

Do \(A > {\rm{\Delta }}{\ell _0}\) nên \({F_{{\rm{min}}}} = 0\) (lúc lò xo không biến dạng).

Độ cứng của lò xo: \(k = \frac{{mg}}{{{\rm{\Delta }}{\ell _0}}} = \frac{{0,1 \cdot 10}}{{0,02}} = 50{\rm{\;N/m}}\)

Lực đàn hồi cực đại \({F_{{\rm{max}}}} = k\left( {{\rm{\Delta }}{\ell _0} + A} \right) = 50.0,06 = 3{\rm{\;N}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Tần số góc: \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,25}} = 8\pi \left( {rad/s} \right).\)

Tại thời điểm ban đầu:

\(\left\{ \begin{array}{l}x < 0\\v = 16\pi \,\left( {cm/s} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\cos \varphi < 0\\ - \omega A\sin \varphi = 16\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \varphi < 0\\\sin \varphi = \frac{{16\pi }}{{ - 8\pi .4}} = - \frac{1}{2}\end{array} \right. \Rightarrow \varphi = - \frac{{5\pi }}{6}\left( {rad} \right).\)

Phương trình dao động: \(x = 4\cos \left( {8\pi t - \frac{{5\pi }}{6}} \right)\,cm.\) Chọn C.

Câu 2

Lời giải

Từ đồ thị, ta thấy điểm cao nhất của đồ thị ứng với \(x = 6\,cm = A.\)

Tại thời điểm ban đầu (t = 0) vật đi qua vị trí \[x = - 3\]cm theo chiều dương, sau khoảng thời gian 0,2 s thì trạng thái này lặp lại. Chu kì của dao động: \[T = 0,2s \Rightarrow \omega = \frac{{2\pi }}{T} = 10\pi \]rad/s.

Trạng thái của vật tại thời điểm ban đầu: \(\left\{ \begin{array}{l}x = - 3 = 6\cos \varphi \\v > 0\end{array} \right. \Rightarrow \varphi = - \frac{{2\pi }}{3}\)

Phương trình dao động của vật: \[x = 6\cos \left( {10\pi t - \frac{{2\pi }}{3}} \right) \Rightarrow v = 60\pi \cos \left( {10\pi t - \frac{\pi }{6}} \right)\]cm. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP