Trong thực hành, để đo gia tốc trọng trường, một học sinh dùng con lắc đơn có chiều dài dây treo 80,00 cm. Khi cho con lắc dao động điều hoà, học sinh này thấy con lắc thực hiện được 20,00 dao động trong thời gian 36,00 s. Theo kết quả thí nghiệm trên, gia tốc trọng trường tại nơi học sinh làm thí nghiệm bằng
Câu hỏi trong đề: 14 bài tập Chủ đề 1. Dao động có lời giải !!
Quảng cáo
Trả lời:
Chu kì \[T = 2\pi \sqrt {\frac{\ell }{g}} = \frac{t}{N} \Rightarrow 2\pi \sqrt {\frac{{0,8}}{g}} = \frac{{36}}{{20}} \Rightarrow g = 9,748\,m/{s^2}\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn Vật lí (Form 2025) ( 38.000₫ )
 - 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
 - Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
 - Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tần số góc: \[\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,4}} = 5\pi \,\,rad/s\]
a) Biên độ \(A = \frac{{{\ell _{\max }} - {\ell _{\min }}}}{2} = \frac{{0,24 - 0,2}}{2} = 0,02\;{\rm{m}}\)
b) Tốc độ cực đại: \({v_{\max }} = \omega A = 5\pi .0,02 = 0,3\;{\rm{m/s}}\)
Gia tốc cực đại: \({a_{\max }} = {\omega ^2}A = {\left( {5\pi } \right)^2}.0,02 = 5{\rm{\;m/}}{{\rm{s}}^{\rm{2}}}\)
c) Độ cứng của lò xo: \(k = \frac{{4{\pi ^2}m}}{{{T^2}}} = \frac{{4{\pi ^2}.0,2}}{{0,{4^2}}} = 49{\rm{\;N/m}}\)
Độ dãn của lò xo khi vật ở vị trí cân bằng là: \(\Delta {\ell _0} = \frac{{mg}}{k} = \frac{{0,2.9,8}}{{49}} = 0,04\;{\rm{m}}\)
Chiều dài của lò xo khi chưa biến dạng: \(\Delta {\ell _{\max }} = A + \Delta {\ell _0} = 0,02\; + 0,04\; = 0,06\;{\rm{m}}{\rm{.}}\)
Câu 2
A. \(x = 4\cos \left( {4\pi t + \frac{{5\pi }}{3}} \right)\,cm.\)
B. \(x = 4\cos \left( {4\pi t - \frac{\pi }{3}} \right)\,cm.\)
Lời giải
Tần số góc: \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,25}} = 8\pi \left( {rad/s} \right).\)
Tại thời điểm ban đầu:
\(\left\{ \begin{array}{l}x < 0\\v = 16\pi \,\left( {cm/s} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\cos \varphi < 0\\ - \omega A\sin \varphi = 16\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \varphi < 0\\\sin \varphi = \frac{{16\pi }}{{ - 8\pi .4}} = - \frac{1}{2}\end{array} \right. \Rightarrow \varphi = - \frac{{5\pi }}{6}\left( {rad} \right).\)
Phương trình dao động: \(x = 4\cos \left( {8\pi t - \frac{{5\pi }}{6}} \right)\,cm.\) Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(v = 30\pi \cos \left( {5\pi t - \frac{\pi }{6}} \right)\)cm/s.
B. \(v = 60\pi \cos \left( {10\pi t - \frac{\pi }{3}} \right)\)cm/s.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
