Một con lắc lò xo gồm vật có khối lượng 0,20 kg gắn vào lò xo nhẹ có độ cứng 50,0 N/m. Tính cơ năng của con lắc khi nó dao động điều hoà với biên độ 4,0 cm.
Một con lắc lò xo gồm vật có khối lượng 0,20 kg gắn vào lò xo nhẹ có độ cứng 50,0 N/m. Tính cơ năng của con lắc khi nó dao động điều hoà với biên độ 4,0 cm.
Câu hỏi trong đề: 14 bài tập Chủ đề 1. Dao động có lời giải !!
Quảng cáo
Trả lời:
Cơ năng: \(W = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2}m{\left( {\sqrt {\frac{k}{m}} } \right)^2}{A^2} = \frac{1}{2}k{A^2} = \frac{1}{2}.50.0,{04^2} = 0,040\;{\rm{J}}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
- 500 Bài tập tổng ôn Vật lí (Form 2025) ( 38.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tần số góc: \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,25}} = 8\pi \left( {rad/s} \right).\)
Tại thời điểm ban đầu:
\(\left\{ \begin{array}{l}x < 0\\v = 16\pi \,\left( {cm/s} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\cos \varphi < 0\\ - \omega A\sin \varphi = 16\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \varphi < 0\\\sin \varphi = \frac{{16\pi }}{{ - 8\pi .4}} = - \frac{1}{2}\end{array} \right. \Rightarrow \varphi = - \frac{{5\pi }}{6}\left( {rad} \right).\)
Phương trình dao động: \(x = 4\cos \left( {8\pi t - \frac{{5\pi }}{6}} \right)\,cm.\) Chọn C.
Lời giải
Từ phương trình: \[x = 2\cos \left( {4\pi t - \frac{\pi }{6}} \right)\] (cm) ta xác định được các đại lượng:
- Biên độ: A = 2 cm
- Tần số góc: \[\omega = 4\pi \,\left( {rad/s} \right)\]
- Chu kì: \[T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{4\pi }} = 0,5\,s\]
- Tần số: \[f = \frac{1}{T} = \frac{1}{{0,5}} = 2\,Hz\]
- Pha ban đầu: \[\varphi = - \frac{\pi }{6}\,rad\]
- Pha của dao động tại thời điểm t = 1 s: \[4\pi .1 - \frac{\pi }{6} = \frac{{23\pi }}{6}rad\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.