Câu hỏi:

23/12/2024 81 Lưu

Một con lắc lò xo gồm vật có khối lượng 0,500 kg gắn vào đầu tự do của một lò xo nhẹ có độ cứng 20,0 N/m. Con lắc dao động theo phương nằm ngang với biên độ 4,00 cm.

a) Tính tốc độ cực đại của vật dao động.

b) Tính cơ năng dao động của con lắc.

c) Tính động năng và tốc độ của vật khi nó ở vị trí có li độ 2,00 cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tần số góc: \(\omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{20}}{{0,5}}} = 6,32\,\,{\rm{rad/s}}\)

a) Tốc độ cực đại: \({v_{\max }} = A\omega = 0,253\;{\rm{m/s}}\)

b) Cơ năng: \(W = {W_{{\mathop{\rm tmax}\nolimits} }} = \frac{1}{2}k{A^2} = 0,0160\;{\rm{J}}\)

c) Khi \(x = 0,02\;{\rm{m}}\) thì: \({W_{\rm{d}}} = W - {W_{\rm{t}}} = 0,016 - \frac{1}{2}.20.0,{02^2} = 0,012\;{\rm{J}}\)

\(v = \sqrt {\frac{{2{W_{\rm{d}}}}}{m}} = 0,219\;{\rm{m/s}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Tần số góc: \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{{0,25}} = 8\pi \left( {rad/s} \right).\)

Tại thời điểm ban đầu:

\(\left\{ \begin{array}{l}x < 0\\v = 16\pi \,\left( {cm/s} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\cos \varphi < 0\\ - \omega A\sin \varphi = 16\pi \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cos \varphi < 0\\\sin \varphi = \frac{{16\pi }}{{ - 8\pi .4}} = - \frac{1}{2}\end{array} \right. \Rightarrow \varphi = - \frac{{5\pi }}{6}\left( {rad} \right).\)

Phương trình dao động: \(x = 4\cos \left( {8\pi t - \frac{{5\pi }}{6}} \right)\,cm.\) Chọn C.

Câu 2

Lời giải

Từ đồ thị, ta thấy điểm cao nhất của đồ thị ứng với \(x = 6\,cm = A.\)

Tại thời điểm ban đầu (t = 0) vật đi qua vị trí \[x = - 3\]cm theo chiều dương, sau khoảng thời gian 0,2 s thì trạng thái này lặp lại. Chu kì của dao động: \[T = 0,2s \Rightarrow \omega = \frac{{2\pi }}{T} = 10\pi \]rad/s.

Trạng thái của vật tại thời điểm ban đầu: \(\left\{ \begin{array}{l}x = - 3 = 6\cos \varphi \\v > 0\end{array} \right. \Rightarrow \varphi = - \frac{{2\pi }}{3}\)

Phương trình dao động của vật: \[x = 6\cos \left( {10\pi t - \frac{{2\pi }}{3}} \right) \Rightarrow v = 60\pi \cos \left( {10\pi t - \frac{\pi }{6}} \right)\]cm. Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP