Câu hỏi:
30/12/2024 175
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = \frac{3}{2}\), công sai \(d = \frac{1}{2}\).
a) Công thức cho số hạng tổng quát \({u_n} = 1 + \frac{n}{3}\).
b) 5 là số hạng thứ 8 của cấp số cộng đã cho.
c) \(\frac{{15}}{4}\) một số hạng của cấp số cộng đã cho.
d) Tổng 100 số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\) bằng \(2620\).
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = \frac{3}{2}\), công sai \(d = \frac{1}{2}\).
a) Công thức cho số hạng tổng quát \({u_n} = 1 + \frac{n}{3}\).
b) 5 là số hạng thứ 8 của cấp số cộng đã cho.
c) \(\frac{{15}}{4}\) một số hạng của cấp số cộng đã cho.
d) Tổng 100 số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\) bằng \(2620\).
Câu hỏi trong đề: 44 bài tập Cấp số cộng và cấp số nhân có lời giải !!
Quảng cáo
Trả lời:
Số hạng tổng quát \({u_n} = {u_1} + \left( {n - 1} \right)d = \frac{3}{2} + \left( {n - 1} \right) \cdot \frac{1}{2} = 1 + \frac{n}{2}\) với mọi \(n \ge 2\).
Xét \(5 = 1 + \frac{n}{2} \Rightarrow n = 8 \in {\mathbb{N}^*}\); suy ra 5 là số hạng thứ 8 của cấp số cộng đã cho.
Xét \(\frac{{15}}{4} = 1 + \frac{n}{2} \Rightarrow n = \frac{{11}}{2} \notin {\mathbb{N}^*};\) suy ra \(\frac{{15}}{4}\) không là một số hạng của cấp số cộng đã cho.
Tổng 100 số hạng đầu của cấp số cộng là: \({S_{100}} = \frac{{100\left[ {2 \cdot \frac{3}{2} + \left( {100 - 1} \right) \cdot \frac{1}{2}} \right]}}{2} = 2625.\)
Đáp án: a) Sai, b) Đúng, c) Sai, d) Sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số hộp sữa ở mỗi hàng từ trên xuống lập thành một cấp số cộng với số hạng đầu \({u_1} = 1\), công sai \(d = 2\). Khi đó, tổng của \(n\) số hạng đầu cấp số cộng là:
\[{S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] \Leftrightarrow 900 = \frac{n}{2}\left[ {2 \cdot 1 + \left( {n - 1} \right) \cdot 2} \right]\] \( \Leftrightarrow 1800 = 2{n^2} \Leftrightarrow {n^2} = 900\). Suy ra \(n = 30\).
Vậy số hộp sữa của dãy cuối cùng là: \({u_{30}} = {u_1} + 29d = 1 + 29 \cdot 2 = 59\).
Đáp án: \(59\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.