Khi kí kết hợp đồng với người lao động, một doanh nghiệp đề xuất hai phương án trả lương như sau:
Phương án 1: Năm thứ nhất, tiền lương là \(120\) triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương được tăng \(18\) triệu đồng.
Phương án 2: Quý thứ nhất, tiền lương là \(24\) triệu đồng. Kể từ quý thứ hai trở đi, mỗi quý tiền lương được tăng \(1,8\) triệu đồng.
Tìm \(n\) (với \(n \in {\mathbb{N}^*}\)) để từ năm thứ \(n\) trở đi thì tổng số tiền lương nhận được trong \(n\) năm đi làm ở phương án thứ hai sẽ nhiều hơn ở phương án thứ nhất?
Khi kí kết hợp đồng với người lao động, một doanh nghiệp đề xuất hai phương án trả lương như sau:
Phương án 1: Năm thứ nhất, tiền lương là \(120\) triệu đồng. Kể từ năm thứ hai trở đi, mỗi năm tiền lương được tăng \(18\) triệu đồng.
Phương án 2: Quý thứ nhất, tiền lương là \(24\) triệu đồng. Kể từ quý thứ hai trở đi, mỗi quý tiền lương được tăng \(1,8\) triệu đồng.
Tìm \(n\) (với \(n \in {\mathbb{N}^*}\)) để từ năm thứ \(n\) trở đi thì tổng số tiền lương nhận được trong \(n\) năm đi làm ở phương án thứ hai sẽ nhiều hơn ở phương án thứ nhất?
Câu hỏi trong đề: 44 bài tập Cấp số cộng và cấp số nhân có lời giải !!
Quảng cáo
Trả lời:
Ở phương án trả lương thứ nhất, số tiền lương mỗi năm người lao động nhận được lập thành cấp số cộng có số hạng đầu \({u_1} = 120\) triệu đồng, công sai \(d = 18\) triệu đồng.
Ở phương án trả lương thứ hai, số tiền lương mỗi quý người lao động nhận được lập thành cấp số cộng có số hạng đầu \({v_1} = 24\) triệu đồng, công sai \(d' = 1,8\) triệu đồng.
Tổng số tiền lương người lao động nhận được trong \(n\) năm ở phương án thứ nhất là tổng \(n\) số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\) và bằng:
\({S_n} = \frac{{\left[ {2 \cdot 120 + \left( {n - 1} \right) \cdot 18} \right] \cdot n}}{2} = 9{n^2} + 111n\) (triệu đồng).
Do \(1\) năm có \(4\) quý nên tổng số tiền lương người lao động nhận được trong \(n\) năm ở phương án thứ hai là tổng \(4n\) số hạng đầu của cấp số cộng \(\left( {{v_n}} \right)\) và bằng:
\({S'_{4n}} = \frac{{\left[ {2 \cdot 24 + \left( {4n - 1} \right) \cdot 1,8} \right] \cdot 4n}}{2} = 14,4{n^2} + 92,4n\) (triệu đồng).
Xét bất phương trình: \(14,4{n^2} + 92,4n > 9{n^2} + 111n \Rightarrow n > \frac{{31}}{9} \approx 3,44\).
Vậy từ năm thứ \(4\) trở đi thì tổng số tiền lương nhận được trong các năm đi làm ở phương án thứ hai sẽ nhiều hơn ở phương án thứ nhất.
Đáp án: \(4\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số hộp sữa ở mỗi hàng từ trên xuống lập thành một cấp số cộng với số hạng đầu \({u_1} = 1\), công sai \(d = 2\). Khi đó, tổng của \(n\) số hạng đầu cấp số cộng là:
\[{S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] \Leftrightarrow 900 = \frac{n}{2}\left[ {2 \cdot 1 + \left( {n - 1} \right) \cdot 2} \right]\] \( \Leftrightarrow 1800 = 2{n^2} \Leftrightarrow {n^2} = 900\). Suy ra \(n = 30\).
Vậy số hộp sữa của dãy cuối cùng là: \({u_{30}} = {u_1} + 29d = 1 + 29 \cdot 2 = 59\).
Đáp án: \(59\).
Lời giải
Ngày thứ nhất Aladin ước 3 điều.
Ngày thứ hai Aladin ước điều.
Ngày thứ ba Aladin ước điều.
Ngày thứ tư Aladin ước điều.
Tiếp tục như thế, ngày thứ 10 Aladin ước điều.
Vậy sau 10 ngày Aladin đã ước: điều.
Đáp án: a) Đúng, b) Đúng, c) Sai, d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
