Câu hỏi:

31/12/2024 2,427

Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_1} = 8,{u_{n + 1}} = 4{u_n} - 9\) với \(n \in {\mathbb{N}^{\rm{*}}}\). Đặt \({v_n} = {u_n} - 3\) với \(n \in {\mathbb{N}^{\rm{*}}}\).

a) \({v_1} = 5\).

b) Dãy số \(\left( {{v_n}} \right)\) là một cấp số nhân có công bội \(q = - 3\).

c) Công thức của số hạng tổng quát \({v_n}\)\({v_n} = 5 \cdot {\left( { - 3} \right)^{n - 1}}\).

d) Công thức của số hạng tổng quát \({u_n}\)\({u_n} = 3 + 5 \cdot {\left( { - 3} \right)^{n - 1}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_1} = 8,{u_{n + 1}} = 4{u_n} - 9\) với (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số hộp sữa ở mỗi hàng từ trên xuống lập thành một cấp số cộng với số hạng đầu \({u_1} = 1\), công sai \(d = 2\). Khi đó, tổng của \(n\) số hạng đầu cấp số cộng là:

\[{S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] \Leftrightarrow 900 = \frac{n}{2}\left[ {2 \cdot 1 + \left( {n - 1} \right) \cdot 2} \right]\] \( \Leftrightarrow 1800 = 2{n^2} \Leftrightarrow {n^2} = 900\). Suy ra \(n = 30\).

Vậy số hộp sữa của dãy cuối cùng là: \({u_{30}} = {u_1} + 29d = 1 + 29 \cdot 2 = 59\).

Đáp án: \(59\).

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP