Tìm giá trị nhỏ nhất của các biểu thức sau:
a) A = x – 2\(\sqrt x \);
b) C = \(\frac{{2\sqrt x - 9}}{{\sqrt x + 1}}\);
c) \(D = \frac{{x + 4\sqrt x + 12}}{{\sqrt x + 3}}\).
Tìm giá trị nhỏ nhất của các biểu thức sau:
a) A = x – 2\(\sqrt x \);
b) C = \(\frac{{2\sqrt x - 9}}{{\sqrt x + 1}}\);
c) \(D = \frac{{x + 4\sqrt x + 12}}{{\sqrt x + 3}}\).
Quảng cáo
Trả lời:
a) A = x – 2\(\sqrt x \) = x – 2\(\sqrt x \) + 1 – 1 = (\(\sqrt x \) − 1)2 – 1.
Nhận thấy (\(\sqrt x \) − 1)2 ≥ 0 với x ≥ 0.
Suy ra (\(\sqrt x \) − 1)2 – 1 ≥ −1 với x ≥ 0 hay A ≥ −1 với x ≥ 0.
Vậy GTNN của A = −1 khi x = 1.
b) C = \(\frac{{2\sqrt x - 9}}{{\sqrt x + 1}}\)
Điều kiện: x ≥ 0.
Với x ≥ 0, ta có: \(\frac{{2\sqrt x - 9}}{{\sqrt x + 1}} \ge \frac{{2\sqrt 0 - 9}}{{\sqrt 0 + 1}} = - 9\).
Vậy GTNN của C = −9 khi x = 0.
c) \(D = \frac{{x + 4\sqrt x + 12}}{{\sqrt x + 3}}\)
Điều kiện: x ≥ 0.
Với x ≥ 0, ta có: \(\frac{{x + 4\sqrt x + 12}}{{\sqrt x + 3}} \ge \frac{{0 + 4.0 + 12}}{{0 + 3}} = 4\).
Dấu “=” xảy ra khi x = 0.
Vậy GTNN của D = 4 khi x = 0.Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Với x > 0 và x ≠ 1, ta có:
\(A = \frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{{\sqrt x }}{{x - 1}} = \frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \frac{{\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \frac{{x + 2\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\).
Có: \(P = \frac{A}{B} + 2018\) với x > 1.
\( = \frac{{x + 2\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}:\frac{{\sqrt x + 2}}{{x + \sqrt x }} + 2018\)
\( = \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}.\frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\sqrt x + 2}} + 2018\)
\( = \frac{x}{{\sqrt x - 1}} + 2018\)
\( = \frac{{x - 1}}{{\sqrt x - 1}} + \frac{1}{{\sqrt x - 1}} + 2018\)
\( = \sqrt x + 1 + \frac{1}{{\sqrt x - 1}} + 2018\)
\( = \sqrt x - 1 + \frac{1}{{\sqrt x - 1}} + 2020\)
Với x > 1, áp dụng bất đẳng thức Cauchy, ta có:
\(\sqrt x - 1 + \frac{1}{{\sqrt x - 1}} \ge 2\sqrt {\left( {\sqrt x - 1} \right).\frac{1}{{\sqrt x - 1}}} = 2\)
Suy ra \(\sqrt x - 1 + \frac{1}{{\sqrt x - 1}} + 2020 \ge 2022\).
Dấu “=” xảy ra khi \(\sqrt x - 1 = \frac{1}{{\sqrt x - 1}}\) hay x = 4 (do x > 1).
Vậy GTNN của P = 2022 khi x = 4.
Lời giải
Đáp án đúng là: B
Với x > 0 và x ≠ 4, ta có:
\(Q = \frac{{\sqrt x - 1}}{{\sqrt x + 2}} - \frac{{5\sqrt x - 2}}{{4 - x}}\)
\(Q = \frac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} + \frac{{5\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\(Q = \frac{{x - 3\sqrt x + 2 + 5\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\)
\(Q = \frac{{x + 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \frac{{\sqrt x }}{{\sqrt x - 2}}\).
Ta có: \(\frac{P}{Q} = \frac{{x + 3}}{{\sqrt x - 2}}:\frac{{\sqrt x }}{{\sqrt x - 2}} = \frac{{x + 3}}{{\sqrt x - 2}}.\frac{{\sqrt x - 2}}{{\sqrt x }} = \frac{{x + 3}}{{\sqrt x }} = \sqrt x + \frac{3}{{\sqrt x }}\).
Do x > 0 nên áp dụng bất đẳng thức Cauchy, ta có:
\(\sqrt x + \frac{3}{{\sqrt x }} \ge 2\sqrt {\sqrt x \frac{3}{{\sqrt x }}} = 2\sqrt 3 \).
Dấu “=” xảy ra khi \(\sqrt x = \frac{3}{{\sqrt x }}\) suy ra x = 3 (thỏa mãn).
Vậy GTNN của \(\frac{P}{Q}\) bằng \(2\sqrt 3 \) khi x = 3.
Câu 3
A. \(\frac{1}{3}\).
B. 0.
C. \( - \frac{1}{3}\).
D. 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{1}{4}\).
B. \( - \frac{1}{4}\).
C. \(\frac{1}{2}\).
D. 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.