Câu hỏi:

12/01/2025 1,041 Lưu

PHẦN II. TỰ LUẬN

Cho các hàm số \(y = {\log _2}x;y = {\log _{\frac{1}{2}}}x;y = {\left( {\frac{1}{2}} \right)^x}\) và \(y = {2^x}\). Đồ thị hàm số dưới đây là của hàm số nào đã cho?

Cho các hàm số  y = log 2 x ; y = log 1 2 x ; y = ( 1 2 ) x  và  y = 2 x . Đồ thị hàm số dưới đây là của hàm số nào đã cho? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đây là dạng đồ thị của hàm số \(y = {\log _a}x\).

Hàm số trên đồng biến nên \(a > 1\).

Mà đồ thị hàm số đi qua điểm \(\left( {2;1} \right)\) nên đồ thị đã cho là đồ thị của hàm số \(y = {\log _2}x\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 60

Cho hình chóp  S . A B C D  có đáy là hình vuông cạnh  a , cạnh bên  S A  vuông góc với đáy,  S A = a . Gọi  M  là trung điểm cạnh  S B . Góc giữa hai đường thẳng  A M  và  B D  bằng bao nhiêu độ? (ảnh 1)

Gọi \(N\) là trung điểm của \(SD\).

Mà \(M\) là trung điểm của \(SB\)nên \(MN//BD\).

Do đó \(\left( {AM,BD} \right) = \left( {AM,MN} \right) = \widehat {AMN}\).

Ta có \(\Delta SAB\) vuông cân tại \(A\) nên \(SB = \sqrt {S{A^2} + A{B^2}} = a\sqrt 2 \).

mà \(AM\) là trung tuyến nên \(AM = \frac{{SB}}{2} = \frac{{a\sqrt 2 }}{2}\) (1).

Tương tự \(AN = \frac{{a\sqrt 2 }}{2}\) (2).

\(MN\) là đường trung bình của \(\Delta SBD\) nên \(MN = \frac{{BD}}{2} = \frac{{a\sqrt 2 }}{2}\) (3).

Từ (1), (2), (3) ta có \(\Delta AMN\) đều nên \(\left( {AM,BD} \right) = \widehat {AMN} = 60^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP