Cho tam giác ABC có các đường cao BD, CE. Biết rằng bốn điểm B, E, D, C cùng nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó.
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi I là trung điểm của BC.
Xét tam giác BEC vuông tại E có EI = IB = IC = \(\frac{{BC}}{2}\) (vì EI là đường trung tuyến ứng với cạnh huyền).
Xét tma giác BCD vuông tại D có DI = IB = IC = \(\frac{{BC}}{2}\) (vì DI là đường trung tuyến ứng với cạnh huyền)
Từ đó ta có: ID = IE = IB = IC = \(\frac{{BC}}{2}\) nên I là tâm đường tròn ngoại tiếp tứ giác DEBC và bán kính R = \(\frac{{BC}}{2}\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi O là trung điểm BC.
Xét tam giác vuông ABC, có AO là trung tuyến nên AO = \(\frac{1}{2}\)BC.
Suy ra OA = OB = OC.
Do đó ba điểm A, B, C cùng thuộc một đường tròn tâm O bán kính \(\frac{1}{2}\)BC.
Lời giải
Đáp án đúng là: A
Trong tam giác vuông trung điểm cạnh huyền là tâm đường tròn ngoại tiếp tam giác đó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.