Câu hỏi:
14/01/2025 361
Sử dụng bảng dữ liệu dưới đây để trả lời Bài 3, 4.
Có R là bán kính đường tròn, d là khoảng cách từ tâm đến đường thẳng.

Sử dụng bảng dữ liệu dưới đây để trả lời Bài 3, 4.
Có R là bán kính đường tròn, d là khoảng cách từ tâm đến đường thẳng.
Từ thích hợp điền vào vị trí số (1) là:
Quảng cáo
Trả lời:
Đáp án đúng là: A
Do R > d (5 cm > 4 cm) nên đường thẳng cắt đường tròn.
Câu hỏi cùng đoạn
Câu 2:
Đáp án thích hợp điền vào vị trí số (2) là:
Lời giải của GV VietJack
Hướng dẫn giải
Đáp án đúng là: A
Để đường thẳng với đường tròn tiếp xúc nhau thì d = R.
Do đó, d = 8 cm.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Xét đường tròn (O; R) có MA, MB là tiếp tuyến.
Suy ra \(\widehat {BOM} = \widehat {AOM} = \frac{1}{2}\widehat {AOB}\) (tính chất hai tiếp tuyến cắt nhau) (1).
∆OAC có OA = OC suy ra \(\widehat {OAC} = \widehat {OCA}\) (tính chất tam giác cân)
Ta có: \(\widehat {OAC} + \widehat {OCA} = \widehat {AOB}\) (tính chất góc ngoài của tam giác)
Từ (1) và (2) suy ra \(\widehat {OCA} = \widehat {BOM}\).
Mà \(\widehat {OCA},\widehat {BOM}\) ở vị trí đồng vị.
Nên CK ∕∕ OM suy ra \(\widehat {MOK} = \widehat {CKO}\) (so le trong).
Chứng minh ∆OAM = ∆OCK (c.g.c) suy ra CK = OM (hai cạnh tương ứng).
Chứng minh ∆KMO = ∆OCK (c.g.c) suy ra \(\widehat {COK} = \widehat {OKM}\) (hai góc .
tương ứng).
Mà \(\widehat {COK}\) = 90° (KO là trung trực của BC) suy ra \(\widehat {OKM}\) = 90°.
Xét tứ giác OBMK có:
\(\widehat {OBM}\) = 90° (MB là tiếp tuyến của (O; R)).
\(\widehat {BOK}\) = 90° (KO là trung trực của BC).
\(\widehat {OKM}\) = 90° (cmt)
Do đó OBMK là hình chữ nhật suy ra MK = OB = R.
Lời giải
Đáp án đúng là: B
Vì AB là tiếp tuyến và B là tiếp điểm nên OB = R = 5 cm; AB ⊥ OB tại B.
Áp dụng định lí Pythagore vào tam giác ABO vuông tại B, ta được:
AB = \(\sqrt {O{A^2} - O{B^2}} = \sqrt {{{13}^2} - {5^2}} = 12\) cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.