Câu hỏi:

16/01/2025 128 Lưu

Trong không gian \[Oxyz\], cho điểm \(A\left( {2; - 1; - 3} \right)\) và mặt phẳng \(\left( P \right):3x - 2y + 4z - 5 = 0.\) Mặt phẳng \[\left( Q \right)\] đi qua \[A\] và song song với mặt phẳng \[\left( P \right)\] có phương trình:

A. \(\left( Q \right):3x - 2y + 4z - 4 = 0.\)                            

B. \(\left( Q \right):3x - 2y + 4z + 4 = 0.\)

C. \(\left( Q \right):3x - 2y + 4z + 5 = 0.\)                            
D. \(\left( Q \right):3x + 2y + 4z + 8 = 0.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do \[\left( Q \right)\] song song với \[\left( P \right)\] nên \[\left( Q \right)\] có vectơ pháp tuyến là \(\vec n = \left( {3; - 2;4} \right)\).

Phương trình mặt phẳng \[\left( Q \right)\]: \(3\left( {x - 2} \right) - 2\left( {y + 1} \right) + 4\left( {z + 3} \right) = 0\)\( \Leftrightarrow 3x - 2y + 4z + 4 = 0\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì hướng bay và vận tốc bay của con chim không đổi nên hai vectơ \(\overrightarrow {AB} ,\overrightarrow {BC} \) cùng hướng.

Mặt khác do thời gian bay từ \(A\) đến \(B\) gấp đôi thời gian bay từ \(B\) đến \(C\) nên \(\overrightarrow {AB} = 2\overrightarrow {BC} \)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{40 - 20 = 2\left( {a - 40} \right)}\\{50 - 40 = 2\left( {b - 50} \right)}\\{50 - 30 = 2\left( {c - 50} \right)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 50}\\{b = 55}\\{c = 60}\end{array} \Rightarrow a + b + c = 165} \right.} \right.\).

Đáp án: \(165\).

Lời giải

\(S.ABCD\) là hình chóp tứ giác đều nên \(SO \bot \left( {ABCD} \right)\)\(ABCD\) là hình vuông.

Suy ra \(OA = OB = OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 \cdot \sqrt 2 }}{2} = a.\)

Dựa vào hình vẽ, ta có \(C\left( {a;0;0} \right),B\left( {0;a;0} \right),A\left( { - a;0;0} \right),S\left( {0;0;2a} \right).\)

Suy ra \(\overrightarrow {AS} = \left( {a;0;2a} \right),\overrightarrow {BS} = \left( {0; - a;2a} \right).\)

Mặt phẳng \(\left( {SAB} \right)\) có một cặp vectơ chỉ phương \(\vec u = \left( {1;0;2} \right)\)\(\vec v = \left( {0; - 1;2} \right)\) nên có vectơ pháp tuyến là \(\vec n = \left[ {\vec u,\vec v} \right] = \left( {\left| {\begin{array}{*{20}{c}}0&2\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&1\\2&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&0\\0&{ - 1}\end{array}} \right|} \right) = \left( {2; - 2; - 1} \right).\)

Suy ra mặt phẳng \(\left( {SAB} \right)\) có phương trình là \(2x - 2y - z + 2a = 0.\)

Vậy \(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| {2 \cdot a - 2 \cdot 0 - 2 \cdot 0 + 2a} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{4a}}{3}.\) Chọn D.

Câu 4

A. \(\overrightarrow {AO}  = \frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} } \right).\) 

B. \(\overrightarrow {AO}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} } \right).\) 

C. \(\overrightarrow {AO}  = \frac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} } \right).\) 

D. \(\overrightarrow {AO}  = \frac{2}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{x + 4}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z + 2}}{{ - 2}}\).                               

B. \(\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 2}}{{ - 2}}\).                           

C. \(\frac{{x + 1}}{{ - 5}} = \frac{{y + 1}}{2} = \frac{{z + 2}}{{ - 4}}\).                                
D. \(\frac{{x + 4}}{{ - 5}} = \frac{{y - 3}}{2} = \frac{{z + 2}}{{ - 4}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(M\) là tâm hình bình hành \(ABB'A'.\)                          

B. \(M\) là tâm hình bình hành \(BCC'B'.\)

C. \(M\) là trung điểm \(BB'.\)                
D. \(M\) là trung điểm \(CC'.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP