Câu hỏi:

19/01/2025 103

Cho hàm số \(y = f\left( x \right) = - x + 1 - \frac{1}{{x - 1}}\).

a) Đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số \(y = f\left( x \right)\).

b) Đạo hàm của hàm số \(y = f\left( x \right)\)\(f'\left( x \right) = \frac{{2x - {x^2}}}{{{{\left( {x - 1} \right)}^2}}},x \ne 1\).

c) Giá trị cực tiểu của hàm số \(y = f\left( x \right)\)\( - 2\).

d) Bất phương trình \({x^2} + \left( {m - 2} \right)x - m + 2 \ge 0\) nghiệm đúng với mọi \(x > 1\) nếu \(m \ge - 2\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - \left( { - x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{1}{{x - 1}}} \right) = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - \left( { - x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( { - \frac{1}{{x - 1}}} \right) = 0\).

Do đó \(y = - x + 1\) là tiệm cận xiên của đồ thị hàm số.

Ta có \(y' = - 1 + \frac{1}{{{{\left( {x - 1} \right)}^2}}}\)\( = \frac{{2x - {x^2}}}{{{{\left( {x - 1} \right)}^2}}},x \ne 1\).

\(y' = \frac{{2x - {x^2}}}{{{{\left( {x - 1} \right)}^2}}} = 0\)\( \Leftrightarrow x = 0\) hoặc \(x = 2\). Bảng biến thiên

Cho hàm số \(y = f\left( x \right) =  - x + 1 - \frac{1}{{x - 1}}\). (ảnh 1)

Dựa vào bảng biến thiên, ta có giá trị cực tiểu của hàm số \(y = f\left( x \right)\)\(2\).

Với \(x > 1\), ta có:

\({x^2} + \left( {m - 2} \right)x - m + 2 \ge 0\)\( \Leftrightarrow m\left( {x - 1} \right) \ge - {x^2} + 2x - 2\)\( \Leftrightarrow m \ge \frac{{ - {x^2} + 2x - 2}}{{x - 1}}\) hay \(f\left( x \right) \le m\).

Từ bảng biến thiên, ta có \(f\left( x \right) \le - 2\) với mọi \(x > 1\).

Suy ra nếu \(m \ge - 2\) thì bất phương trình \(f\left( x \right) \le m\) nghiệm đúng với mọi \(x > 1\).

Đáp án:       a) Sai,                    b) Đúng,     c) Sai,                    d) Đúng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố:

\({A_1}\): Sản phẩm lấy ra lần thứ nhất bị lỗi. Khi đó, ta có: \(P\left( {{A_1}} \right) = \frac{{39}}{{2000}}\); \(P\left( {\overline {{A_1}} } \right) = \frac{{1961}}{{2000}}\).

\({A_2}\): Sản phẩm lấy ra lần thứ hai bị lỗi.

Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn \(1999\) sản phẩm và trong đó có \(38\) sản phẩm lỗi nên ta có: \(P\left( {{A_2}\left| {{A_1}} \right.} \right) = \frac{{38}}{{1999}}\), suy ra \(P\left( {\overline {{A_2}} \left| {{A_1}} \right.} \right) = \frac{{1961}}{{1999}}\).

Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn \(1999\) sản phẩm trong đó có \(39\)sản phẩm lỗi nên ta có: \(P\left( {{A_2}\left| {\overline {{A_1}} } \right.} \right) = \frac{{39}}{{1999}}\), suy ra \(P\left( {\overline {{A_2}} \left| {\overline {{A_1}} } \right.} \right) = \frac{{1960}}{{1999}}\).

Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:

\(P\left( {{A_2}} \right) = P\left( {{A_2}\left| {{A_1}} \right.} \right) \cdot P\left( {{A_1}} \right) + P\left( {{A_2}\left| {\overline {{A_1}} } \right.} \right) \cdot P\left( {\overline {{A_1}} } \right)\)\( = \frac{{38}}{{1999}} \cdot \frac{{39}}{{2000}} + \frac{{39}}{{1999}} \cdot \frac{{1961}}{{2000}} \approx 0,02\).

Đáp án: \(0,02\)

Lời giải

Ta có \(AB = 2\sqrt 2 \)\( \Rightarrow OA = OB = 2\)\( \Rightarrow A\left( {0; - 2;0} \right)\). Ta có \(OB = 2 \Rightarrow B\left( {2;0;0} \right)\).

Trong không gian \(Oxyz\), cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), (ảnh 2)

\(OS = \sqrt {S{A^2} - O{A^2}} = \sqrt {16 - 4} = 2\sqrt 3 \Rightarrow S\left( {0;0;2\sqrt 3 } \right)\).

Suy ra tọa độ của trọng tâm của tam giác \(SAB\)\(G\left( {\frac{2}{3}; - \frac{2}{3};\frac{{2\sqrt 3 }}{3}} \right)\).

Ta có \(C\left( {0;2;0} \right)\)\( \Rightarrow \overrightarrow {CE}  = \left( {a; - 2;b} \right)\), \(\overrightarrow {CG} = \left( {\frac{2}{3}; - \frac{8}{3};\frac{{2\sqrt 3 }}{3}} \right)\).

\(C,E,G\) thẳng hàng nên \(\overrightarrow {CE} \) cùng phương với \(\overrightarrow {CG} \)

\( \Rightarrow \frac{{3a}}{2} = \frac{3}{4} = \frac{{b\sqrt 3 }}{2}\)\( \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = \frac{{\sqrt 3 }}{2}\end{array} \right.\)\( \Rightarrow a \cdot b = \frac{{\sqrt 3 }}{4}\).

Do \(D\) đối xứng với \(B\) qua mặt phẳng \(\left( {Oyz} \right)\) nên với mọi điểm \(M\) trên mặt phẳng \(\left( {Oyz} \right)\), ta đều có \(MG + MB = MG + MD\).

Mặt khác, hai điểm \(G\)\(D\) khác phía so với mặt phẳng \(\left( {Oyz} \right)\) nên \(MG + MD\) nhỏ nhất khi và chỉ khi ba điểm \(G,D,M\) thẳng hàng.

Ta có \(D\left( { - 2;0;0} \right)\), \(\overrightarrow {DM} = \left( {2;m;n} \right),\overrightarrow {DG} = \left( {\frac{8}{3}; - \frac{2}{3};\frac{{2\sqrt 3 }}{3}} \right)\).

\(G,D,M\) thẳng hàng nên \(\overrightarrow {DM} \) cùng phương với \(\overrightarrow {DG} \)

\( \Rightarrow \frac{3}{4} = - \frac{{3m}}{2} = \frac{{n\sqrt 3 }}{2}\)\( \Rightarrow \left\{ \begin{array}{l}m = - \frac{1}{2}\\n = \frac{{\sqrt 3 }}{2}\end{array} \right.\)\( \Rightarrow {m^2} + {n^2} = 1\).

Đáp án:       a) Sai,                    b) Đúng,     c) Sai,                    d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay