Câu hỏi:
19/01/2025 5,177Diện tích hình phẳng giới hạn bởi parabol \(\left( P \right):y = f\left( x \right) = {x^2} - 1\), trục tung và tiếp tuyến của \(\left( P \right)\) tại điểm \(M\left( { - 1;0} \right)\) bằng
Câu hỏi trong đề: Đề thi ôn tốt nghiệp THPT Toán có lời giải !!
Quảng cáo
Trả lời:
Ta có \(f'\left( x \right) = {\left( {{x^2} - 1} \right)^\prime } = 2x;f'\left( { - 1} \right) = - 2\).
Phương trình tiếp tuyến của \(\left( P \right)\) tại điểm \(M\left( { - 1;0} \right)\) là
\(y = f'\left( { - 1} \right) \cdot \left( {x + 1} \right) + f\left( { - 1} \right)\)\( \Leftrightarrow y = - 2 \cdot \left( {x + 1} \right) + 0\) hay \(y = - 2x - 2\).
Diện tích cần tìm là \(S = \int\limits_{ - 1}^0 {\left| {\left( {{x^2} - 1} \right) - \left( { - 2x - 2} \right)} \right|{\rm{d}}x} \)\( = \int\limits_{ - 1}^0 {\left| {{x^2} + 2x + 1} \right|{\rm{d}}x} = \frac{1}{3}\). Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 5 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = {3^2}\).
Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là \(6\)km.
Đáp án: \(6\).
Lời giải
Gọi \({V_1}\) là thể tích của khối tròn xoay được tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số \(y = x + \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1,x = 4\) quay quanh trục \(Ox\).
Khi đó \({V_1} = \pi \int\limits_1^4 {{{\left( {x + \frac{1}{x}} \right)}^2}} \;{\rm{d}}x = \frac{{111\pi }}{4}\,\,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).
Gọi \({V_2}\) là thể tích của khối tròn xoay được tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số \(y = x\), trục hoành và hai đường thẳng \(x = 1,x = 4\) quay quanh trục \(Ox\).
Khi đó \({V_2} = \pi \int\limits_1^4 {{x^2}} \;{\rm{d}}x = 21\,\pi \,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).
Vậy thể tích của bề dày chiếc bát thủy tinh đó là: \(V = {V_1} - {V_2} = \frac{{111\pi }}{4} - 21\pi = \frac{{27\pi }}{4} \approx 21,2\,\,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right){\rm{.}}\)
Đáp án: \(21,2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 11)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận