Câu hỏi:

19/01/2025 3,133

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {1;2;3} \right)\), \(B\left( {0;1; - 6} \right)\) và mặt phẳng \(\left( P \right):4x - y + 2z + 13 = 0\).

a) Mặt phẳng \(\left( P \right)\) đi qua điểm \(A\).

b) Đường thẳng \(\Delta \) đi qua điểm \(A\) và vuông góc với mặt phẳng \(\left( P \right)\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 1 + 4t\\y = 2 + t\\z = 3 + 2t\end{array} \right.\).

c) Điểm \(C\left( { - 3;3;1} \right)\) là giao điểm của đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\).

d) Gọi \(d\) là một đường thẳng nằm trong \(\left( P \right)\)\(d\) đi qua \(B\) sao cho khoảng cách từ \(A\) đến \(d\) đạt giá trị nhỏ nhất. Một vectơ chỉ phương của \(d\) có tọa độ là \(\left( {a;b;c} \right)\) với \(a\) là số nguyên tố. Giá trị của \(a + b + c = 6\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(4 \cdot 1 - 2 + 2 \cdot 3 + 13 = 21 \ne 0\) nên mặt phẳng \(\left( P \right)\) không đi qua điểm \(A\).

Đường thẳng \(\Delta \) vuông góc với mặt phẳng \(\left( P \right)\) nên có một vectơ chỉ phương là \(\overrightarrow u = \left( {4; - 1;2} \right).\)

Phương trình tham số của \(\Delta \)\(\left\{ \begin{array}{l}x = 1 + 4t\\y = 2 - t\\z = 3 + 2t\end{array} \right.\).

Gọi \(C\) là giao điểm của đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\).

\(C \in \Delta \) nên \(C\left( {1 + 4{t_0};2 - {t_0};3 + 2{t_0}} \right)\).

\(C \in \left( P \right)\) nên \(4\left( {1 + 4{t_0}} \right) - \left( {2 - {t_0}} \right) + 2\left( {3 + 2{t_0}} \right) + 13 = 0\), suy ra \({t_0} = - 1\). Vậy \(C\left( { - 3;3;1} \right)\).

Một vectơ chỉ phương của \(d\)\(\overrightarrow {CB} = \left( {3; - 2; - 7} \right)\). Suy ra \(a + b + c = 3 - 2 - 7 = - 6\).

Đáp án:       a) Sai,                    b) Sai,                   c) Đúng,      d) Sai.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \({x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 5 = 0 \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = {3^2}\).

Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là \(6\)km.

Đáp án: \(6\).

Lời giải

Gọi \({V_1}\) là thể tích của khối tròn xoay được tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số \(y = x + \frac{1}{x}\), trục hoành và hai đường thẳng \(x = 1,x = 4\) quay quanh trục \(Ox\).

Khi đó \({V_1} = \pi \int\limits_1^4 {{{\left( {x + \frac{1}{x}} \right)}^2}} \;{\rm{d}}x = \frac{{111\pi }}{4}\,\,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).

Gọi \({V_2}\) là thể tích của khối tròn xoay được tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm số \(y = x\), trục hoành và hai đường thẳng \(x = 1,x = 4\) quay quanh trục \(Ox\).

Khi đó \({V_2} = \pi \int\limits_1^4 {{x^2}} \;{\rm{d}}x = 21\,\pi \,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).

Vậy thể tích của bề dày chiếc bát thủy tinh đó là: \(V = {V_1} - {V_2} = \frac{{111\pi }}{4} - 21\pi = \frac{{27\pi }}{4} \approx 21,2\,\,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right){\rm{.}}\)

Đáp án: \(21,2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Bất phương trình \({\log _3}\left( {{x^2} - x + 7} \right) < 2\) có tập nghiệm là khoảng \(\left( {a;b} \right)\). Tính \(b - a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong không gian tọa độ \(Oxyz\), mặt cầu \(\left( S \right)\) có tâm \(I\left( {2;1; - 1} \right)\) và đường kính 6 có phương trình là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay