Câu hỏi:
23/01/2025 236
Trong mặt phẳng tọa độ \(\left( {Oxy} \right)\), cho điểm \(M\left( {1; - 2} \right)\) và đường thẳng \(d:2x - 4y + 3 = 0\). Đường thẳng \(\Delta \) đi qua \(M\) và song song \(d\) có phương trình \(ax + by - 5 = 0\left( {a,b \in \mathbb{R}} \right)\). Tính giá trị biểu thức \({a^2} + {b^2}\).
Trong mặt phẳng tọa độ \(\left( {Oxy} \right)\), cho điểm \(M\left( {1; - 2} \right)\) và đường thẳng \(d:2x - 4y + 3 = 0\). Đường thẳng \(\Delta \) đi qua \(M\) và song song \(d\) có phương trình \(ax + by - 5 = 0\left( {a,b \in \mathbb{R}} \right)\). Tính giá trị biểu thức \({a^2} + {b^2}\).
Quảng cáo
Trả lời:
Trả lời: 5
Vì đường thẳng \(\Delta //d\) nên \(\Delta :2x - 4y + c = 0\left( {c \ne 3} \right)\).
Vì \(\Delta \) đi qua \(M\left( {1; - 2} \right)\) nên ta có \(2.1 - 4.\left( { - 2} \right) + c = 0 \Leftrightarrow c = - 10\).
Do đó \(\Delta :2x - 4y - 10 = 0 \Leftrightarrow x - 2y - 5 = 0\).
Suy ra \(a = 1;b = - 2\). Do đó \({a^2} + {b^2} = 5\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Điều kiện \( - {x^2} + 2x + 3 \ge 0\)\( \Leftrightarrow - 1 \le x \le 3\).
Lời giải
Trả lời: 255
Gọi \(T\) là số tiền ông An phải trả khi gọi quốc tế \(t\) phút
Ta có \(T = \left\{ \begin{array}{l}6500t\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;t \le 8\\8.6500 + \left( {t - 8} \right).6000\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;8 < t \le 15\\8.6500 + \left( {15 - 8} \right).6000 + \left( {t - 15} \right).5500\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;15 < t \le 25\\8.6500 + \left( {15 - 8} \right).6000 + \left( {25 - 15} \right).5500 + \left( {t - 25} \right).5000\;\;\;{\rm{khi}}\;t > 25\end{array} \right.\)
Hay \(T = \left\{ \begin{array}{l}6500t\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;t \le 8\\6000t + 4000\;\;\;\;\;{\rm{khi}}\;8 < t \le 15\\5500t + 11500\;\;\;{\rm{khi}}\;15 < t \le 25\\5000t + 24000\;\;\;{\rm{khi}}\;t > 25\end{array} \right.\).
Số tiền ông An phải trả trong cuộc gọi đầu tiên là \(5000.31 + 24000 = 179000\)đồng.
Số tiền ông An phải trả trong cuộc gọi thứ hai là: \(6000.12 + 4000 = 76000\)đồng.
Tổng số tiền ông An phải trả là: \(179000 + 76000 = 255000\) đồng = 255 nghìn đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.