Câu hỏi:
25/01/2025 23Kết quả của giới hạn \[{\mathop{\rm li}\nolimits} {\rm{m}}\frac{{{{\rm{3}}^{\rm{n}}} - {\rm{2}}{\rm{.}}{{\rm{5}}^{{\rm{n + 1}}}}}}{{{{\rm{2}}^{{\rm{n + 1}}}}{\rm{ + }}{{\rm{5}}^{\rm{n}}}}}\] bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
\[{\rm{lim}}\frac{{{{\rm{3}}^{\rm{n}}} - {\rm{2}}{\rm{.}}{{\rm{5}}^{{\rm{n + 1}}}}}}{{{{\rm{2}}^{{\rm{n + 1}}}}{\rm{ + }}{{\rm{5}}^{\rm{n}}}}}{\rm{ = lim}}\frac{{{{\left( {\frac{{\rm{3}}}{{\rm{5}}}} \right)}^{\rm{n}}} - {\rm{10}}}}{{{\rm{2}}{\rm{.}}{{\left( {\frac{{\rm{2}}}{{\rm{5}}}} \right)}^{\rm{n}}}{\rm{ + 1}}}}{\rm{ = }}\frac{{ - {\rm{10}}}}{{\rm{1}}}{\rm{ = }} - {\rm{10}}\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai dãy (un) và (vn) có \[{{\rm{u}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{n + 1}}}}\] và \[{{\rm{v}}_{\rm{n}}}{\rm{ = }}\frac{{\rm{2}}}{{{\rm{n + 2}}}}\]. Khi đó \[\lim \frac{{{{\rm{v}}_{\rm{n}}}}}{{{{\rm{u}}_{\rm{n}}}}}\] có giá trị bằng
Câu 2:
Giá trị của giới hạn \[\lim \left( {\sqrt {{\rm{n}} + 5} - \sqrt {{\rm{n}} + 1} } \right)\] bằng
Câu 3:
Cho hai dãy (un) và(vn) thỏa mãn \[\left| {{{\rm{u}}_{\rm{n}}}} \right| \le {{\rm{v}}_{\rm{n}}}\] với mọi n và \[\lim {{\rm{v}}_{\rm{n}}} = 0\]
Câu 4:
Kết quả của giới hạn \[\lim \sqrt {{{2.3}^{\rm{n}}} - {\rm{n}} + 2} \] bằng:
Câu 5:
Có bao nhiêu giá trị nguyên a thuộc khoảng (0;20) sao cho \[\lim \sqrt {3 + \frac{{{\rm{a}}{{\rm{n}}^2} - 1}}{{3 + {{\rm{n}}^2}}} - \frac{1}{{{2^{\rm{n}}}}}} \] là một số nguyên.
Câu 6:
Giá trị của giới hạn \[\lim \sqrt[3]{{{{\rm{n}}^3} + 1}} - {\rm{n}}\] là:
Câu 7:
Cho dãy số (un) có giới hạn xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 2}\\{{u_{n + 1}} = \frac{{{u_n} + 1}}{2}}\end{array}} \right.,n \ge 1\).Tinh limun
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
về câu hỏi!