Câu hỏi:
25/01/2025 75Kết quả của giới hạn \[\lim \frac{{3\sin {\rm{n}} + 4\cos {\rm{n}}}}{{{\rm{n}} + 1}}\]bằng:
Quảng cáo
Trả lời:
Ta có \[0 \le \left| {\frac{{3\sin {\rm{n}} + 4\cos {\rm{n}}}}{{{\rm{n}} + 1}}} \right| \le \left| {\frac{{\left( {{3^2} + {4^2}} \right).\left( {{{\sin }^2}{\rm{n}} + {{\cos }^2}{\rm{n}}} \right)}}{{{\rm{n}} + 1}}} \right| = \frac{5}{{{\rm{n}} + 1}} \to 0\]
Theo nguyên lý kẹp ta suy ra \[\lim \frac{{3\sin {\rm{n}} + 4\cos {\rm{n}}}}{{{\rm{n}} + 1}} = 0\]
Đáp án cần chọn là: B
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[{\rm{lim}}\frac{{{{\rm{v}}_{\rm{n}}}}}{{{{\rm{u}}_{\rm{n}}}}}{\rm{ = lim}}\frac{{{\rm{n + 1}}}}{{{\rm{n + 2}}}}{\rm{ = lim}}\frac{{{\rm{1 + }}\frac{{\rm{1}}}{{\rm{n}}}}}{{{\rm{1 + }}\frac{{\rm{2}}}{{\rm{n}}}}}{\rm{ = 1}}\]
Đáp án cần chọn là: A
Lời giải
\[\lim \left( {\sqrt {{\rm{n + }}5} - \sqrt {{\rm{n + 1}}} } \right) = \lim \frac{{{\rm{n}} + 5 - {\rm{n}} - 1}}{{\sqrt {{\rm{n + 5}}} {\rm{ + }}\sqrt {{\rm{n + 1}}} }} = \lim \frac{4}{{\sqrt {{\rm{n}} + 5} + \sqrt {{\rm{n}} + 1} }} = 0\]
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.