Câu hỏi:

10/03/2025 1,635

Một hộp đựng 4 quả cầu xanh, 6 quả cầu đỏ, 5 quả cầu vàng, các quả cầu đều khác nhau. Chọn ngẫu nhiên 4 quả cầu từ hộp đó.

a) Số phần tử của không gian mẫu là 1356.

b) Xét biến cố \(A\): “Chọn được đúng 2 quả cầu xanh”. Khi đó \(n\left( A \right) = 330\).

c) Xác suất để chọn được 4 quả cầu có ít nhất 3 quả xanh là \(\frac{3}{{91}}\).

d) Xác suất để chọn được 4 quả cầu trong đó có ít nhất 1 quả đỏ là \(\frac{6}{{65}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) S, b) Đ, c) Đ, d) S

a) Ta có \(n\left( \Omega \right) = C_{15}^4 = 1365\).

b) Có \(n\left( A \right) = C_4^2.C_6^1.C_5^1 + C_4^2.C_6^2 + C_4^2.C_5^2 = 330\).

c) Số cách chọn được 4 quả cầu có ít nhất 3 quả xanh là \(C_4^3.C_6^1 + C_4^3.C_5^1 + C_4^4 = 45\).

Xác suất chọn được 4 quả cầu có ít nhất 3 quả xanh là \(\frac{{45}}{{1365}} = \frac{3}{{91}}\).

d) Số cách chọn 4 quả cầu không có quả màu đỏ là: \(C_4^1.C_5^3 + C_4^2.C_5^2 + C_4^3.C_5^1 = 90\).

Xác suất chọn được 4 quả cầu không có quả màu đỏ là \(\frac{{90}}{{1365}} = \frac{6}{{91}}\).

Suy ra xác suất để chọn được 4 quả cầu trong đó có ít nhất 1 quả đỏ là \(1 - \frac{6}{{91}} = \frac{{85}}{{91}}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Trả lời: 1

Bình phương hai vế của phương trình ta được:

\({x^2} + 3x - 2 = 1 + x\)\( \Leftrightarrow {x^2} + 2x - 3 = 0\)\( \Leftrightarrow x = - 3\) hoặc \(x = 1\)

Thử lại ta thấy \(x = 1\) là nghiệm của phương trình.

Do đó tổng tất cả các nghiệm của phương trình là 1.

Lời giải

Đáp án đúng là: C

Khai triển nhị thức Newton của \({\left( {2x - 3} \right)^4}\) có 5 số hạng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay