Quảng cáo
Trả lời:
Giải bất phương trình:
\(\left( {x - 1} \right)\left( {2x + 3} \right) < 2{x^2} - 4\left( {2 - x} \right)\)
\(2{x^2} + 3x - 2x - 3 < 2{x^2} - 8 + 4x\)
\(2{x^2} + 3x - 2x - 2{x^2} - 4x < - 8 + 3\)
\( - 3x < - 5\)
\(x > \frac{5}{3}.\)
Vậy nghiệm của bất phương trình là \(x > \frac{5}{3}.\)
Câu hỏi cùng đoạn
Câu 2:
2) Giải phương trình .
Lời giải của GV VietJack
Điều kiện xác định: \(x \ne 3,\,\,x \ne - 3.\)
\(\frac{x}{{x - 3}} - \frac{2}{{x + 3}} = \frac{{{x^2}}}{{{x^2} - 9}}\)
\(\frac{{x\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} - \frac{{2\left( {x - 3} \right)}}{{\left( {x + 3} \right)\left( {x - 3} \right)}} = \frac{{{x^2}}}{{\left( {x + 3} \right)\left( {x - 3} \right)}}\)
\(x\left( {x + 3} \right) - 2\left( {x - 3} \right) = {x^2}\)
\({x^2} + 3x - 2x + 6 = {x^2}\)
\(x = - 6.\)
Vậy phương trình đã cho có nghiệm là \(x = - 6.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Vì \[MA,{\rm{ }}MB\] là hai tiếp tuyến của đường tròn \(\left( O \right)\) nên \(MA = MB\) (tính chất hai tiếp tuyến cắt nhau). Do đó điểm \(M\) nằm trên đường trung trực của \(AB.\)
Do \(A,\,\,B \in \left( O \right)\) nên \(OA = OB,\) do đó điểm \(O\) nằm trên đường trung trực của \(AB.\)
Suy ra \[OM\] là đường trung trực của \(AB\) nên \(MO \bot AB\) tại \[K.\]Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.