Câu hỏi:

11/03/2025 209 Lưu

(1,0 điểm) Một cây cau cao 6 m. Để hái một buồng cau xuống, phải đặt thang tre sao cho đầu thang tre đạt độ cao đó. Khi đó góc tạo bởi thang tre với mặt đất là bao nhiêu, biết chiếc thang dài 8 m (làm tròn kết quả đến phút).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tam giác \(ABC\) vuông tại \(A\) với \(AC = 6{\rm{\;m}},\,\,BC = 8{\rm{\;m}}\) mô hình hóa bài toán trên.

Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(\sin B = \frac{{AC}}{{BC}} = \frac{6}{8} = \frac{3}{4}.\)

Suy ra \(\widehat {B\,} \approx 48^\circ 35'.\)

Vậy góc tạo bởi thang tre với mặt đất là khoảng \(48^\circ 35'.\)
Khi đó góc tạo bởi thang tre với mặt đất là bao nhiêu, biết chiếc thang dài 8 m (làm tròn kết quả đến phút). (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x,\,\,y\) (triệu đồng) lần lượt là số tiền đầu tư cho khoản thứ nhất và khoản thứ hai \(\left( {0 < x,\,\,y < 600} \right).\)

Tổng số tiền cho hai khoản đầu tư là: \(x + y = 600.\,\,\,\left( 1 \right)\)

Số tiền lãi cho khoản đầu tư thứ nhất là: \(4\% x = 0,04x\) (triệu đồng).

Số tiền lãi cho khoản đầu tư thứ hai là: \(6\% y = 0,06y\) (triệu đồng).

Theo bài, sau một năm số tiền lãi thu được là 28 triệu nên ta có phương trình:

\(0,04x + 0,06y = 28\) hay \(2x + 3y = 1\,\,400.\,\,\,\left( 2 \right)\)

Từ (1) và (2), ta có hệ phương trình: \[\left\{ \begin{array}{l}x + y = 600\\2x + 3y = 1\,\,400\end{array} \right.\]

Giải hệ phương trình trên, ta được: \(\left\{ \begin{array}{l}x = 400\\y = 200\end{array} \right.\) (thỏa mãn).

Vậy cô An đã chia khoản đầu tư thứ nhất là 400 triệu đồng, khoản đầu tư thứ hai là 200 triệu đồng.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Độ dài cung \(60^\circ \) của đường tròn có bán kính 5 cm là: \(l = \frac{{\pi \cdot 5 \cdot 60}}{{180}} = \frac{{5\pi }}{3}{\rm{\;(cm)}}{\rm{.}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP